The Quantum States of a Graph - Institut de Mathématiques de Marseille 2014- Access content directly
Journal Articles Mathematics Year : 2023

The Quantum States of a Graph

Mohd Arif Raza
Widyan Basaffar
  • Function : Author
  • PersonId : 1093911
Dav G Glynn
Abdul Nadim Khan
  • Function : Author
  • PersonId : 1231811
Hatoon Shoaib
Patrick Solé
  • Function : Author
  • PersonId : 1100094

Abstract

Quantum codes are crucial building blocks of quantum computers. With a self-dual quantum code is attached, canonically, a unique stabilised quantum state. Improving on a previous publication, we show how to determine the coefficients on the basis of kets in these states. Two important ingredients of the proof are algebraic graph theory and quadratic forms. The Arf invariant, in particular, plays a significant role.
Fichier principal
Vignette du fichier
mathematics-11-02310.pdf (321.46 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
licence : CC BY - Attribution

Dates and versions

hal-04098428 , version 1 (16-05-2023)

Licence

Attribution

Identifiers

Cite

Mohd Arif Raza, Adel N Alahmadi, Widyan Basaffar, Dav G Glynn, Manish K Gupta, et al.. The Quantum States of a Graph. Mathematics , 2023, 11, ⟨10.3390/math11102310⟩. ⟨hal-04098428⟩
20 View
2 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More