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Abstract

Lawsonia intracellularis is a Gram- negative obligate intracellular bacterium that is the aetiological agent of proliferative enter-
opathy (PE), a common intestinal disease of major economic importance in pigs and other animal species. To date, progress in 
understanding the biology of L. intracellularis for improved disease control has been hampered by the inability to culture the 
organism in vitro. In particular, our understanding of the genomic diversity and population structure of clinical L. intercellula-
ris is very limited. Here, we utilized a metagenomic shotgun approach to directly sequence and assemble 21 L. intracellularis 
genomes from faecal and ileum samples of infected pigs and horses across three continents. Phylogenetic analysis revealed a 
genetically monomorphic clonal lineage responsible for infections in pigs, with distinct subtypes associated with infections in 
horses. The genome was highly conserved, with 94 % of genes shared by all isolates and a very small accessory genome made 
up of only 84 genes across all sequenced strains. In part, the accessory genome was represented by regions with a high density 
of SNPs, indicative of recombination events importing novel gene alleles. In summary, our analysis provides the first view of the 
population structure for L. intracellularis, revealing a single major lineage associated with disease of pigs. The limited diversity 
and broad geographical distribution suggest the recent emergence and clonal expansion of an important livestock pathogen.

DATA SummARy
The sequencing reads generated in the current study have 
been deposited in the Sequence Read Archive (SRA) under 
the BioProject numbers PRJNA554776 and PRJNA432360. 
The draft genome for sample LR189 is deposited in the 
National Center for Biotechnology Information (NCBI) 
under the BioProject number PRJNA432360. SRA and draft 
genome accession numbers are listed.

InTRoDuCTIon
Modern microbiology techniques predominately rely on 
culture- based analyses and the ability to grow the organism 

of interest in vitro prior to downstream analyses. This has 
impeded the detection, surveillance and investigation of 
bacterial pathogens with substantial medical and economic 
importance that are either non- culturable or difficult to 
culture, limiting our understanding of their biology and our 
ability to design treatments and control methods.

The microaerophilic, obligate intracellular bacterium 
Lawsonia intracellularis belongs to the family Desulfovibrion-
aceae of the class Deltaproteobacteria, and is the sole species 
described to date for the genus Lawsonia [1]. L. intracellularis 
is the aetiological agent of a non- zoonotic enteric disease 
known as proliferative enteropathy (PE) in pigs, and has been 
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detected in a wide range of wild and domestic animal species 
[2–5]. Two clinical manifestations have been described 
in pigs: (i) a mild, self- limiting form commonly affecting 
weaners or young growing animals between 6 to 20 weeks 
of age and (ii) an acute, severe form with a high mortality 
rate more commonly observed in animals between 4 to 
12 months of age [6]. In addition, the number of equine PE 
outbreaks in foals has increased worldwide [7–9]. Although 
hyperplastic lesions resulting in weight loss are observed in 
pigs and horses, clinical signs and pathology differ between 
the two hosts [10–12]. Horses tend to develop hypopro-
teinaemia with acute but non- haemorrhagic diarrhoea, and 
infection is often self- limiting or subclinical [11]. Previously, 
cross- species experimental infections in pigs and horses have 
failed to develop clinical signs, indicating host specificity of 
L. intracellularis subtypes [13, 14].

Biological characterization of L. intracellularis has been 
severely hampered by its fastidious in vitro growth require-
ments [15, 16], and the molecular basis of L. intracellularis 
pathogenesis remains undetermined. To date, only six L. 
intracellularis genome sequences have been deposited in 
the National Center for Biotechnology Information (NCBI) 
database, three of which were obtained from cell- cultured 
samples, an approach that requires extensive passaging 
in immortalized cell lines. However, such a method is 
labour- intensive, slow and may risk the introduction of 
mutations during passaging. The first complete genome for 
a L. intracellularis strain was sequenced using the Sanger- 
based method in 2006, revealing a 1.4 Mb chromosome and 
three plasmids of 27, 39 and 194 kbp. Comparative analysis 
of two additional pathogenic porcine isolates has been 
carried out, revealing limited genetic differences [17], but 
the population structure and phylogeny of this pathogen 
remains unknown.

In the current study, we utilized culture- independent 
metagenomic sequencing of 21 clinical samples from field 
outbreaks of porcine and equine PE from 7 countries to 
assemble metagenome- derived L. intracellularis whole 
genomes. In addition, 3 cell- passaged samples were also 
sequenced, generating a total of 24 genome assemblies. 
Comparative genomic and phylogenetic analysis uncov-
ered the population structure of L. intracellularis for the 
first time, revealing a genetically monomorphic clone 
responsible for infections in pigs and distinct subtypes 
associated with equine infections. These data have provided 
novel insights into the genetic diversity of the bacterium, 
enhancing our understanding of its biology.

mETHoDS
Bacterial strains, DnA extraction and microbial 
DnA enrichment
All samples sequenced in this study are listed in Table 
S1 (available in the online version of this article). Data 
from six additional strains (GenBank GCA_000055945.1, 
GCA_000331715.1, GCA_001975945.1, GCA_003312265.1, 
GCA_003312285.1 and GCA_003312305.1) were retrieved 

from the NCBI. All samples in this study were stored at 
−80 °C prior to extraction. DNA was extracted from faecal 
samples using the DNeasy PowerSoil kit (Qiagen), using 
PowerBead tubes and FastPrep homogenizer (MP Biomedi-
cals) to homogenize and mechanically lyse bacterial cells. 
DNA from tissue samples were extracted using DNeasy 
Blood and Tissue kits (Qiagen), with the exception of 
sample 4242, which was extracted using phenol/chloroform 
and precipitated by ethanol, as previously described [18]. 
The NEBNext Microbiome DNA Enrichment kit (New 
England Biolabs) was used to deplete host DNA from tissue 
DNA samples. All commercial kits were used according to 
the manufacturer’s recommendations. The quality of DNA 
was measured using an Agilent 4200 TapeStation System 
(Agilent Genomics) and its quantity was measured using a 
Qubit 3.0 fluorometer with the Qubit dsDNA BR Assay kit 
(Invitrogen). L. intracellularis genomic DNA was quantified 
from all samples by qPCR using primers targeting the aspA 
gene.

Genome sequencing
Genomic DNA libraries were prepared using a TruSeq Nano 
550 bp Gel Free kit (Illumina) and library preparation and 
sequencing service was provided by Edinburgh Genomics. 
Sequencing was performed on Hi- Seq 2500, Hi- Seq 4000 
or Mi- Seq instruments (Illumina).

Sequence processing
The quality of sequence read FASTQ files was assessed 
using FastQC (Babraham Bioscience Technologies, 
Cambridge, UK). All raw reads were adapter- and quality- 
trimmed with Trimmomatic (v 0.36) on paired- end 
mode [19]. Kraken taxonomic sequence classifier (v 1.0) 
was used to remove host reads from the filtered reads. A 
custom Kraken database was constructed containing Sus 
scrofa (GenBank GCA_ 000003025.6), Rattus norvegicus 
(GenBank GCA_000001895.4), Mus musculus (GenBank 
GCA_000001635.8) and Equus caballus (GenBank 
GCA_002863925.1) genomes [20]. Host reads that mapped 

Impact Statement

Proliferative enteropathy is a common enteric disease in 
pigs caused by Lawsonia intracellularis, highly prevalent 
across major pig- farming countries worldwide. Infec-
tion caused by the pathogen has a significant impact on 
animal health, welfare and production, imposing a huge 
economic burden in the pork production industry. Due 
to the difficulty in culturing the pathogen in vitro, little 
is known regarding its pathogenesis and the genomic 
diversity of the population remains unknown. The current 
work explores metagenomic sequencing to obtain L. intra-
cellularis genome sequences, providing novel insights 
into the genetic diversity and evolution of the bacterium, 
enhancing our understanding of its biology.
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to the custom database were removed from the FASTQ files 
and unclassified reads were used for downstream analyses.

Genome assembly and annotation
Draft genomes of L. intracellularis were assembled de novo 
for each isolate using megahit with the meta- large pre- set 
parameter [21]. BWA MEM [22] was used to map reads 
back to the draft assemblies, and the contig coverage within 
each metagenome assembly was calculated using the script 
jgi_summarize_bam_contig_depths from the MetaBAT2 
package [23]. The assembled contigs within each sample 
were binned using MetaBAT2. Assessment of genome 
bins on the level of completeness and contamination was 
performed using CheckM [24]. In addition, draft genomes 
were assembled using a reference- guided de novo approach 
using Kraken to extract L. intracellularis FASTQ reads prior 
to assembly. A custom Kraken database containing E40504, 
N343 and PHE/MN1-00 reference genome sequences was 
constructed and used to classify L. intracellularis reads. 
Three reference genomes were included to reduce bias 
towards a single reference. The classified L. intracellularis 
reads were used as input for assembly with the SPAdes 
genome assembler (v 3.11.1) [25]. The quality of each 
genome assembly using both methods was assessed using 
quast (v 4.6.0) [26] based on the PHE/MN1-00 reference 
genome. Coding sequences were inferred and annotated 
with Prokka [27].

Pangenome analysis
Pangenome analysis was performed using Roary with the 
95 % blastp threshold without splitting paralogues, and 
the  roary2svg. pl script was used to plot and visualize Roary 
output [28].

Variant calling and phylogenetic inference
Processed reads were mapped onto the L. intracellularis 
PHE/MN1-00 reference genome (GCA_000055945.1) 
using snippy (v 4.0) [29]. Mapping quality and sequencing 
coverage of L. intracellularis from each sample were 
assessed using QualiMap (v 2.2.1) [30]. For single nucleo-
tide polymorphisms (SNPs) to be called, a minimum depth 
of 5× reads was required with a minimum fraction of 0.9 
for a variant present in the reads. The prophage- associated 
genomic island and ribosomal RNA (rRNA) genes were 
excluded, as these are highly conserved in bacteria leading 
to unspecific mapping from other species. SNPs were also 
called using Harvest v1.2 [31] with the same reference 
genome. The bam file output from snippy was visualized 
using Artemis [32] and differences in SNPs identified from 
Snippy and Harvest were checked manually and curated 
with false positives removed. Detection of recombination 
within alignments was performed using Gubbins [33] and 
visualized using Phandango [34].

Maximum- likelihood (ML) phylogenetic inference was 
performed on non- recombinant core genome SNPs using 
IQ- TREE (v 1.6.3) [35] with 1000 bootstrap replicates. 

ModelFinder implemented in the IQ- TREE software 
package was used to find the nucleotide substitution model 
that best fit the dataset [36].

RESuLTS
optimization of an approach for the recovery of 
L. intracellularis genomes directly from clinical 
samples
In order to facilitate whole- genome sequencing and compara-
tive genomics of L. intracellularis, we developed and opti-
mized a shotgun metagenomic approach for sequencing 
DNA extracted from faecal and ileal samples. For ileum and 
cell- cultured samples, DNA was extracted and enriched for 
microbial DNA before quantification of genome copy number 
by quantitative PCR of the aspA gene. At a concentration of 
3.04×103 genome copies per ng of DNA, we obtained a mean 
sequencing depth of 19×, with 38 % of reads mapping to L. 
intracellularis (Table S1, Fig. S1). For faecal samples, DNA 
was extracted and genome copy number was quantified 
as before, with the L. intracellularis genome copy number 
being directly proportional to the mean sequencing depth 
and coverage across the reference genome PHE/MN1-00 
(GeneBank GCA_000055945.1) (Fig. S2). Multiple libraries 
were pooled and multiplexed on a single flow cell lane, gener-
ating between 55 and 227 million reads per sample (Table S1). 
Samples with L. intracellularis copy numbers of ≥9×104 ng−1 
genomic DNA achieved genome coverage of >98 % across 
the reference genome. A reference- guided de novo assembly 
approach was adapted for recovery of L. intracellularis 
genomes from each metagenome dataset. Reads were mapped 
against three L. intracellularis reference genomes – PHE/
MN1-00 (GCA_000055945.1), N343 (GCA_000331715.1) 
and E40504 (GCA_001975945.1) – before assembly with 
metaSPAde to construct a consensus sequence [37]. In this 
manner, 24 L. intracellularis draft whole- genome sequences 
with >98 % genome coverage were obtained, of which 21 were 
obtained directly from clinical samples and 3 were obtained 
from isolates propagated in McCoy cells (Table S3).

Phylogenetic analysis of L. intracellularis reveals a 
single genetically monomorphic porcine clone
To characterize the population structure of L. intracellularis, 
we analysed a total of 30 genomes comprising porcine (n=27) 
and equine (n=3) isolates from 7 countries across 3 conti-
nents, including the 6 publicly available genomes (Table 1). 
Of these, 24 had been obtained directly from clinical samples 
in Brazil (n=1), Japan (n=3) [38], Poland (n=9), the UK (n=9) 
and Sweden (n=2). The remaining six genomes were obtained 
from cell- cultured isolates originating from the USA (n=3), 
Denmark (n=2) and the UK (n=1). A multiple genome 
sequence alignment of 1 673 690 bp was produced with 6257 
core genome SNPs identified outside putative recombinant 
regions as detected by Gubbins [33]. ML phylogenetic trees 
were constructed using either SNPs identified from a core- 
genome sequence alignment (Fig.  1) or SNPs identified 
from mapping short- read sequences to the core reference 
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Table 1. L. intracellularis isolates used in the current study

Isolate name Country of origin Host Source Year of isolation No. CDS Accession

5189 UK Porcine Cell cultured 1993 1422 SRR9841585

DKp23 Denmark Porcine Cell cultured 2003 1430 SRR9841584

15 540 Denmark Porcine Cell cultured na 1418 SRR9866663

LR189 UK Porcine Ileum 1993 1416 PRDD00000000

ED UK Porcine Ileum 2015 1419 SRR9866662

Thirsk2 UK Porcine Ileum 2017 1422 SRR9866665

630 UK Porcine Faecal 2016 1420 SRR9866661

682 UK Porcine Faecal 2016 1420 SRR9866660

SRUC1 UK Porcine Faecal 2016 1422 SRR9866667

SRUC3 UK Porcine Faecal 2016 1421 SRR9866666

1886 Poland Porcine Faecal 2014 1421 SRR9866664

9761 Poland Porcine Faecal 2014 1419 SRR9866659

661 Poland Porcine Faecal 2014 1417 SRR9866658

5939 Poland Porcine Faecal 2014 1422 SRR9866671

2746 Poland Porcine Faecal 2014 1421 SRR9866670

8163 Poland Porcine Faecal 2014 1418 SRR9866672

6073 Poland Porcine Faecal 2014 1419 SRR9866675

5626 Poland Porcine Faecal 2014 1422 SRR9866674

3387 Poland Porcine Faecal 2014 1424 SRR9866677

2069 Sweden Porcine Faecal 2003 1418 SRR9866669

4242 Sweden Porcine Ileum 2003 1417 SRR9866668

F22 Brazil Porcine Faecal 2016 1432 SRR9866654

PHE/MN1-00* US Porcine Cell cultured na 1439 GCA_000055945

N343* US Porcine Cell cultured na 1434 GCA_000331715

Fu* Japan Porcine Ileum na 1411 GCA_003312285

Ni* Japan Porcine Ileum na 1412 GCA_003312265

Ib2* Japan Porcine Ileum na 1412 GCA_003312305

E40504* US Equine Cell cultured na 1408 GCA_008363085

H9 UK Equine Faecal 2017 1416 SRR9866657

H14 UK Equine Faecal 2017 1414 SRR9866650

*Genome from NCBI.
na, data not available; CDS, coding sequence.

genome isolate PHE/MN1-00. Each approach yielded an 
indistinguishable phylogeny comprising a single major clade 
that contained all 27 porcine clinical isolates, and 2 distinct 
equine- associated branches represented by the UK and US 
equine isolates, respectively.

The isolates represented in the porcine clade contained a 
maximum pairwise distance of 343 SNPs, indicating very 
limited genetic diversity. In contrast, isolates from the 2 
equine clades had longer phylogenetic branches, with a 
distance of 3222 SNPs separating the 2 clades, suggesting 
greater genetic diversity. Among the porcine isolates, a total 
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Fig. 1. Unrooted ML phylogenetic tree of L. intracellularis. Twenty- four genomes were generated in this study and six were obtained from 
the NCBI. The phylogeny was reconstructed using IQTREE based on 6257 core genome SNPs after filtering for putative recombinant 
sites (5260 SNPs), with the best- fitting substitution model selected by ModelFinder (TVM+F+I). The core genome was defined as the 
chromosomal and plasmids sequence with the prophage- associated genome island region excluded. The phylogenetic tree revealed the 
host- associated genetic structure of L. intracellularis, of which three phylogroups are formed. The 27 porcine isolates are clustered into a 
clonal group highlighted in blue, and the equine isolates are clustered into 2 distinct groups highlighted in grey. The scale bar represents 
the number of nucleotide substitutions per variable site.

of 721 polymorphic sites were identified, of which 557 SNPs 
were found within 414 genes, comprising 29 % of the total 
genes. Most SNPs resulted in predicted amino acid replace-
ments (384 non- synonymous versus 156 synonymous) and 
8 nonsense mutations were identified, leading to predicted 
truncation or loss of function.

Within the porcine clade, three sub- lineages of porcine- 
derived L. intracellularis (Fig. 2) were identified, which we 
refer to as sub- lineage I, consisting of 2 isolates from Japan, 
and sub- lineage II, comprising a cluster of 4 UK isolates and 
a cluster of 4 isolates from Poland. Sub- lineage III is more 
geographically diverse, populated by isolates from Japan, 
Europe and the Americas, consistent with wider dispersal of 
isolates across multiple continents in comparison to the other 
sub- lineages, which exhibit greater geographical restriction. 
However, our conclusions regarding the geographical spread 
of these lineages are limited by the small number of isolates 
included in the study.

L. intracellularis has a very limited accessory 
genome
Pan- genomic analysis of L. intracellularis using Roary 
revealed the gene content of this pathogen to be highly 
conserved, with the total number of predicted genes in each 
genome varying from 1393 to 1411 genes, and an average of 
only 1.3 % gene content variation among the population (Fig. 
S4). The number of unique gene clusters predicted across all 
30 isolates was 1458, with 1374 (94.3 %) identified core genes 
conserved in all 30 genomes (Fig. 3a). The accessory genome 
is made up of a combined total of 84 gene clusters (5.7 % of 

the pangenome), comprising 24 genes identified in at least 2 
genomes and 60 strain- specific genes (Fig. 3b). Of note, 15 
accessory genes were located within a previously described 
18 kb prophage- associated genomic island [39], identified 
in 4 porcine strains DKp23, F22, N343 and PHE/MN1-00, 
representing a single monophyletic clade (Fig. 2). The highly 
conserved prophage- associated genomic island contains a 
tetM gene encoding resistance to tetracycline, a commonly 
used antibiotic for the treatment of PE. The island exhibits 
a G+C content of 60 %, much higher than the average 33 % 
G+C content of the rest of the chromosome, which is a strong 
indication of horizontal acquisition (Fig. S5). Examination 
of the remaining 66 genes identified as accessory revealed 
divergent gene orthologues that were distinguished from core 
genes due to protein truncations, in- frame deletions or amino 
acid sequence identity below the default blastp threshold of 
95 %. Repeating the analysis with Roary using a lower 80 % 
blastp threshold reduced the number of inferred accessory 
genes to 37 (Fig. S4), excluding genes located within the 
prophage genomic- associated island.

A 111 bp in- frame deletion in the LI_RS03480 gene encoding 
a putative ZIP family divalent metal cation transporter was 
observed in two cell- passaged isolates, including L. intracel-
lularis strains 15 540 (80 passages) and DKp23 (23 passages), 
whereas the intact form of the gene was present among all 
clinical isolates (Fig. S5). We observed direct repeats flanking 
the deleted region of LI_RS03480 (Fig. S5), suggesting that 
intra- molecular recombination may have resulted in the exci-
sion of this region (Fig. S5).
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Fig. 2. High- resolution ML phylogeny of 27 L. intracellularis isolates from the porcine clade. The dataset was composed of isolates 
originated from Japan (n=3), US (n=2), Brazil (n=1), Poland (n=9), UK (n=8), Denmark (n=2) and Sweden (n=2). The phylogeny was estimated 
based on 721 SNPs, called against the core genome of reference strain PHE/MN1-00 (NCBI GenBank accession no. GCA_000055945.1). 
The tree was midpoint rooted and constructed using IQTREE with the best- fitting substitution model selected by ModelFinder (HKY+F+I). 
Phylogenetic tree branches in thick lines highlight the three major sub- lineages (sub- lineages I, II and III) formed among the isolates. 
All nodes displayed contained bootstrap support of >80 %, with the exception of two nodes, as indicated by the red dots. The scale bar 
represents the number of nucleotide substitutions per variable site.

Chromosomal regions of high SnP density suggest 
recombination has impacted on the evolution of L. 
intracallularis
For accurate phylogenetic reconstruction, Gubbins was used 
to identify and remove genomic regions with a high density 
of polymorphisms. The resulting tree displayed the same 
topology, but the phylogenetic distances separating the three 
lineages were reduced (Fig. S3), particularly the terminal 
branch length of equine strain E40504 (Fig. S3). Gubbins 
identified multiple chromosomal regions containing high 
SNP density along two phylogenetic branches: (i) the branch 
leading to the UK equine clade from the node of diversifica-
tion between the porcine clade and the E40504 isolate and 
(ii) the terminal branch of E40504 (Figs S6 and Fig. 4). Puta-
tive recombination events were not detected along branches 
within the porcine clade. In total, 28 high- SNP- density regions 
were identified on the branch leading to the UK equine clade, 

representing 88 536 bp, and 5 % of the core genome. The esti-
mated r/m value, indicating the relative frequency of recombi-
nation to point mutation, was 0.65, consistent with mutation 
being more important than recombination in genome diver-
sification. In addition, 18 high- SNP- density regions were 
predicted along the E40504 terminal branch, with a total 
length of 100 182 bp affecting 6 % of its core genome, with an 
estimated r/m value of 2.0. A total of 119 genes were identi-
fied within the regions of elevated SNP density, including 19 
encoding proteins with less than 95 % aa sequence identity to 
their respective orthologues (Table S4), consistent with the 
pan- genome analysis. Functional annotation of these genes 
revealed that most (11 of 19) were hypothetical proteins with 
no blastp hits, with the remaining genes encoding putative 
proteins with various predicted clusters of orthologous groups 
(COGs) functional categories, including cell metabolism, 
signal transduction, membrane biogenesis, cell cycle/mitosis 
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Fig. 3. Pan- genome analysis of 30 L. intracellularis isolates. (a) Venn diagram displaying output of Roary performed with default 
parameters, which identified a complement of 1374 core genes shared among all the isolates. Thirty- four, 14 and 12 clusters of genes 
unique to isolates within the porcine clade, the UK equine clade (isolates H14 and H9), and the US equine isolate E40504 were identified, 
respectively. (b) ML phylogeny based on core genome SNPs outside regions of inferred recombination (left) and distribution of accessory 
genes for each of the isolates (right), with the number of accessory genes stated in the column on the right.
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Fig. 4. Frequency of SNPs per 1000 bp across the chromosome and three plasmids of L. intracellularis genomes of equine- derived H14 
isolate (inner grey ring) and E40504 isolate (outer grey ring). Polymorphisms were called against the core genome of porcine- derived 
isolate PHE/MN1-00 (NCBI GenBank accession no. GCA_000055945.1). Regions across the genomes highlighted in red represent regions 
of elevated diversity detected by Gubbins.

control and hypothetical proteins with unknown function 
(Table S4). Of note, two genes, LI_RS06320 and LI_RS06315 
(old locus tag LI1159 and LI1158, respectively), belong to a 
predicted type III secretion operon, which were previously 
found to be highly expressed during infection [40].

DISCuSSIon
The fastidious growth requirement of L. intracellularis has 
severely restricted our capacity to examine its evolution 
and molecular pathogenesis. In the current work, a shotgun 
metagenomic sequencing approach was developed and applied 
to obtain L. intracellularis genome sequences through direct 
sequencing of clinical samples, including faecal and tissue 
samples. Our study represents a proof- of- principle study for 
whole- genome sequencing of L. intracellularis directly from 
clinical samples and a first view of the population structure 
of this major livestock pathogen. Although a limited number 
of isolates were included in our study, comparative genomic 
analysis revealed a host- associated genetic structure with 
isolates infecting pigs segregating to a single major clonal 
lineage distinct from isolates infecting horses. Cross- species 
experimental infection studies of pigs with the equine L. 
intracellularis E40504 could not establish disease in pigs, 
suggesting an equine- specific host tropism [13, 14].

Our analysis revealed remarkably low levels of intraspecies 
diversity in gene content. Much of the variation observed 
was due to the strain- dependent 18 kb prophage- associated 

genomic island, identified in four closely related porcine 
isolates. This island was previously described by Vannucci et 
al. as a DLP12- associated island, and the authors considered 
the element to be defective and of limited pathogenic value, 
since its presence did not correlate with a more virulent 
phenotype [39]. Consistent with this observation, the majority 
of isolates sequenced in the current study, along with the three 
Japanese strains, were derived from clinical PE cases, but did 
not contain this prophage- associated island.

The highly clonal population of porcine L. intracellularis 
isolates displaying very limited genetic variation suggests 
that the population may have evolved from clonal expansion 
of a single or small number of strains. The lack of correla-
tion between sampling times and divergence precluded 
robust estimation of the mutation rate and a reliable predic-
tion of the time to the most recent common ancestor of the 
porcine clone. Although highly homogenous in gene content, 
comparative analysis of equine and porcine L. intracellularis 
isolates identified multiple regions of elevated genetic diver-
sity, which likely resulted from the import of homologous 
DNA by recombination, though an elevated substitution rate 
due to selection acting on specific chromosomal loci cannot 
be ruled out. However, the population structure is clonal, as 
these regions only accounted for approximately 5 % of the L. 
intracellularis genome, and genome diversification mainly 
occurs through mutation. Given the obligate intracellular 
lifestyle of L. intracellularis, the effect of genetic drift due to 
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a population bottleneck introduced during host transmis-
sion may have a profound limiting effect on genetic diversity 
[41, 42]. Functional classification based on COGs of genes 
located within regions of elevated SNP density predicted 
proteins involved in a broad range of functions. Notably, 
one of the regions presenting a significant excess of SNPs 
displaying high sequence diversification between the E40504 
strain and porcine isolates corresponds to a previously 
reported type III secretion operon [40]. Genes within this 
operon are among the most highly expressed L. intracellularis 
transcripts during peak of infection and were hypothesized to 
be expressed in the porcine enterocyte endosome [40]. Thus, 
sequence variations of these genes between isolates targeting 
the two host species suggest a possible important role in 
pathogenesis, and their exact role during infection warrants 
further investigation.

The wide distribution of porcine- derived isolates indicates 
a global transmission of isolates from sub- lineage III across 
Europe, East Asia and the Americas. We speculate that the 
spread is likely linked to the expanding international livestock 
trade, as millions of live animals are being transported between 
countries [43, 44]. Previously, such events have facilitated the 
transmission and spread of foot- and- mouth disease in the UK 
and classical swine fever in the USA [45, 46]. Since porcine 
PE cases can be subclinical in nature, high- level pig move-
ments can easily facilitate spread of the disease without being 
detected. Thus, our finding highlights the need for improved 
surveillance and novel control strategies for L. intracellularis.

The current work presents several limitations that need to be 
considered. First, the reliance on reference genomes during 
assembly could theoretically interfere with the discovery 
of unique strain- dependent genomic regions. However, we 
employed multiple different approaches, including reference- 
guided and reference- free assembly methods, to establish 
the optimal approach for genome sequence extraction and 
assembly, with only minor differences in output observed. 
Secondly, the presence of repetitive DNA sequences remains 
a technical challenge for short- read assembly and mapping 
and thus chromosomal rearrangements and structural varia-
tions may not be captured. Finally, the samples included were 
biased towards isolates derived from clinical disease cases, 
which may only represent a proportion of the population. 
Thus, examination of isolates from subclinical and clinically 
apparent cases will be required to fully assess the general 
population of L. intracellularis, and elucidate predisposing 
factors contributing to disease outbreak to inform better 
control strategies.

In the current study, we have demonstrated the potential 
of metagenomic sequencing to investigate the population 
genomics of an obligate intracellular pathogen. This has in 
turn provided novel insights into the genome biology of L. 
intracellularis and the first glimpse into the evolutionary 
history of a major bacterial pathogen of pigs and other 
animals. This study provides a framework for future investi-
gations into the population biology of unculturable bacterial 
pathogens.

Funding information
R. J. B was supported BBSRC- funded CASE studentship with Zoetis 
(BB/L01680X/1). T. A. A, A. L. A and J. R. F were supported by the BBSRC 
institute strategic programme grant (BB/J004227/1, BB/P013740/1).

Acknowledgements
We are grateful to Dr Alastair Foote of Rossdales Equine Hospital and 
Diagnostic Centre, UK, for providing equine clinical samples.

Author contributions
T. A. A., R. F. and A. L. A. conceived and designed the project. R. J .B. 
performed the experiments. E. W, R. M. C. G, M. J and T. S provided key 
clinical samples. R. J. B., B. A. W., G. Y., R. B., R. F and T.A.A. analysed and 
interpreted the data. R. J. B. wrote the manuscript, with major contribu-
tions by J. R. F. and T. A. A. All authors reviewed and contributed to the 
editing of the manuscript. R. J. B. was supervised by J. R. F. and T.A.A.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Data Bibliography
1. Bengtsson RJ, SRA, PRJNA, 554776 (2019).

2. Bengtsson RJ, SRA, PRJNA, 432360 (2019).

References
 1. Gebhart CJ, Barns SM, Mcorist S, Lin G- F, Lawson GH. Ileal 

symbiont intracellularis, an obligate intracellular bacterium of 
porcine intestines showing a relationship to Desulfovibrio species. 
International Journal of Systematic and Evolutionary Microbiology 
1993;43:533–538.

 2. Klein EC, Gebhart CJ, Duhamel GE. Fatal outbreaks of proliferative 
enteritis caused by Lawsonia intracellularis in young colony- raised 
rhesus macaques. J Med Primatol 1999;28:11–.

 3. Lawson GHK, Gebhart CJ. Proliferative enteropathy. J Comp Pathol 
2000;122:77–100.

 4.  Pusterla N, Mapes S, Rejmanek D, Gebhart C. Detection of Lawsonia 
intracellularis by real- time PCR in the feces of free- living animals 
from equine farms with documented occurrence of equine prolif-
erative enteropathy. J Wildl Dis 2008;44:992–.

 5.  Murakata K, Sato A, Yoshiya M, Kim S, Watarai M et al. Infection 
of different strains of mice with Lawsonia intracellularis derived 
from rabbit or porcine proliferative enteropathy. J Comp Pathol 
2008;139:8–15.

 6. Rowland A, Rowntree P. A haemorrhagic bowel syndrome asso-
ciated with intestinal adenomatosis in the pig. Veterinary Record 
1972;91:235–241.

 7.  Shimizu C, Shibahara T, Takai S, Kasuya K, Chikuba T et  al. 
Lawsonia intracellularis and virulent Rhodococcus equi infection in 
a thoroughbred Colt. J Comp Pathol 2010;143:303–308.

 8.  Van Den Wollenberg L, Butler C, Houwers D, de Grootv M, Panhui-
jzen H et al. Lawsonia intracellularis- associated proliferative enter-
itis in weanling foals in the Netherlands. Tijdschr Diergeneeskd 
2011;136:565–570.

 9. Pusterla N, Gebhart CJ. Equine proliferative enteropathy - a review 
of recent developments. Equine Vet J 2013;45:403–409.

 10.  Pusterla N, Gebhart C. Equine proliferative enteropathy caused by 
Lawsonia intracellularis. Equine Vet Educ 2009;21:415–419.

 11. Lavoie JP, Drolet R, Parsons D, Leguillette R, Sauvageau R et al. 
Equine proliferative enteropathy: a cause of weight loss, colic, diar-
rhoea and hypoproteinaemia in foals on three breeding farms in 
Canada. Equine Vet J 2000;32:418–425.

 12.  Pusterla N, Wattanaphansak S, Mapes S, Collier J, Hill J et al. Oral 
infection of weanling foals with an equine isolate of Lawsonia intra-
cellularis, agent of equine proliferative enteropathy. J Vet Intern Med 
2010;24:622–627.

 13.  Vannucci FA, Pusterla N, Mapes SM, Gebhart C. Evidence of host 
adaptation in Lawsonia intracellularis infections. Vet Res 2012;43:53.

 14. Sampieri F, Vannucci FA, Allen AL, Pusterla N, Antonop-
oulos AJ et al. Species- Specificity of equine and porcine Lawsonia 



10

Bengtsson et al., Microbial Genomics 2020;6

Five reasons to publish your next article with a microbiology Society journal
1.  The Microbiology Society is a not-for-profit organization.
2.  We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3.   Our journals have a global readership with subscriptions held in research institutions around  

the world.
4.  80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5.  Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.

intracellularis isolates in laboratory animals. Canadian Journal of 
Veterinary Research 2013;77:261–272.

 15.  Lawson GH, McOrist S, Jasni S, Mackie RA. Intracellular bacteria 
of porcine proliferative enteropathy: cultivation and maintenance 
in vitro. J Clin Microbiol 1993;31:1136–1142.

 16.  Vannucci FA, Wattanaphansak S, Gebhart CJ. An alternative 
method for cultivation of Lawsonia intracellularis. J Clin Microbiol 
2012;50:1070–1072.

 17.  Sait M, Aitchison K, Wheelhouse N, Wilson K, Lainson FA et  al. 
Genome sequence of Lawsonia intracellularis strain N343, isolated 
from a sow with hemorrhagic proliferative enteropathy. Genome 
Announc 2013;1:e00027–13.

 18.  Jacobson M, Aspan A, Königsson MH, Segerstad CHaf, Wallgren P 
et al. Routine diagnostics of Lawsonia intracellularis performed by 
PCR, serological and post mortem examination, with special 
emphasis on sample preparation methods for PCR. Vet Microbiol 
2004;102:189–201.

 19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 2014;30:2114–2120.

 20. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence 
classification using exact alignments. Genome Biol 2014;15:R46.

 21. Li D, Liu C- M, Luo R, Sadakane K, Lam T- W. MEGAHIT: an ultra- 
fast single- node solution for large and complex metagen-
omics assembly via succinct de Bruijn graph. Bioinformatics 
2015;31:1674–1676.

 22. Li H, Durbin R. Fast and accurate short read alignment with 
Burrows- Wheeler transform. Bioinformatics 2009;25:1754–1760.

 23. Kang DD, Froula J, Egan R, Wang Z, MetaBAT WZ. MetaBAT, an 
efficient tool for accurately reconstructing single genomes from 
complex microbial communities. PeerJ 2015;3:e1165.

 24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, 
Tyson GW. CheckM: assessing the quality of microbial genomes 
recovered from isolates, single cells, and metagenomes. Genome 
Res 2015;25:1043–1055.

 25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et  al. 
SPAdes: a new genome assembly algorithm and its applica-
tions to single- cell sequencing. Journal of Computational Biology 
2012;19:455–477.

 26. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality 
assessment tool for genome assemblies. Bioinformatics 
2013;29:1072–1075.

 27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioin-
formatics 2014;30:2068–2069.

 28. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et  al. Roary: 
rapid large- scale prokaryote pan genome analysis. Bioinformatics 
2015;31:3691–3693.

 29. Seemann T. snippy: fast bacterial variant calling from NGS reads 
2015.

 30. Okonechnikov K, Conesa A, García- Alcalde F. Qualimap 2: advanced 
multi- sample quality control for high- throughput sequencing data. 
Bioinformatics 2015;32:btv566–4.

 31.  Treangen TJ, Ondov BD, Koren S, Phillippy AM. The harvest suite 
for rapid core- genome alignment and visualization of thousands of 
intraspecific microbial genomes. Genome Biol 2014;15:524.

 32. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: 
an integrated platform for visualization and analysis of high- 
throughput sequence- based experimental data. Bioinformatics 
2012;28:464–469.

 33. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et  al. 
Rapid phylogenetic analysis of large samples of recombinant 
bacterial whole genome sequences using Gubbins. Nucleic Acids 
Res 2015;43:e15–e..

 34. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM 
et  al. Phandango: an interactive viewer for bacterial population 
genomics. Bioinformatics 2018;34:292–293.

 35. Nguyen L- T, Schmidt HA, von Haeseler A, Minh BQ. IQ- TREE: a 
fast and effective stochastic algorithm for estimating maximum- 
likelihood phylogenies. Mol Biol Evol 2015;32:268–274.

 36. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, 
Jermiin LS. ModelFinder: fast model selection for accurate phylo-
genetic estimates. Nat Methods 2017;14:587–.

 37. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaS-
PAdes: a new versatile metagenomic assembler. Genome Res 
2017;27:824–834.

 38.  Nishikawa S, Ogawa Y, Eguchi M, Rambukkana A, Shimoji Y. 
Draft genome sequences of Lawsonia intracellularis swine strains 
causing proliferative enteropathy in Japan. Microbiol Resour 
Announc 2018;7:e01021–18.

 39.  Vannucci FA, Kelley MR, Gebhart CJ. Comparative genome 
sequencing identifies a prophage- associated genomic island 
linked to host adaptation of Lawsonia intracellularis infections. Vet 
Res 2013;44:49.

 40.  Vannucci FA, Foster DN, Gebhart CJ. Laser microdissection 
coupled with RNA- seq analysis of porcine enterocytes infected 
with an obligate intracellular pathogen (Lawsonia intracellularis). 
BMC Genomics 2013;14:421.

 41. Achtman M, Wagner M. Microbial diversity and the genetic nature 
of microbial species. Nat Rev Microbiol 2008;6:431–.

 42.  Smith NH, Gordon SV, de la Rua- Domenech R, Clifton- Hadley RS, 
Hewinson RG. Bottlenecks and broomsticks: the molecular evolu-
tion of Mycobacterium bovis. Nat Rev Microbiol 2006;4:670–.

 43. Fèvre EM, Bronsvoort BMdeC, Hamilton KA, Cleaveland S. Animal 
movements and the spread of infectious diseases. Trends Microbiol 
2006;14:125–131.

 44. Balka G, Podgórska K, Brar MS, Bálint Ádám, Cadar D et al. Genetic 
diversity of PRRSV 1 in central eastern Europe in 1994–2014: 
origin and evolution of the virus in the region. Sci Rep 2018;8:7811.

 45. Gibbens JC, Wilesmith JW, Sharpe CE, Mansley LM, Michalo-
poulou E et  al. Descriptive epidemiology of the 2001 foot- and- 
mouth disease epidemic in Great Britain: the first five months. 
Veterinary Record 2001;149:729–743.

 46. Brown VR, Bevins SN. A review of classical swine fever virus and 
routes of introduction into the United States and the potential for 
virus establishment. Frontiers in Veterinary Science 2018;5:31.


	Metagenomic sequencing of clinical samples reveals a single widespread clone of Lawsonia intracellularis responsible for porcine proliferative enteropathy
	Abstract
	Data Summary
	Introduction
	Methods
	Bacterial strains, DNA extraction and microbial DNA enrichment
	Genome sequencing
	Sequence processing
	Genome assembly and annotation
	Pangenome analysis
	Variant calling and phylogenetic inference

	Results
	Optimization of an approach for the recovery of L. intracellularis genomes directly from clinical samples
	Phylogenetic analysis of L. intracellularis reveals a single genetically monomorphic porcine clone
	L. intracellularis has a very limited accessory genome
	Chromosomal regions of high SNP density suggest recombination has impacted on the evolution of L. intracallularis

	Discussion
	References


