

Potential of existing online 24-hour dietary recall tools for national dietary surveys

Rozenn Gazan, Florent Vieux, Ségolène Mora, Sabrina Havard, Carine

Dubuisson

► To cite this version:

Rozenn Gazan, Florent Vieux, Ségolène Mora, Sabrina Havard, Carine Dubuisson. Potential of existing online 24-hour dietary recall tools for national dietary surveys. Public Health Nutrition, In press, 10.1017/S1368980021003517. anses-03322732

HAL Id: anses-03322732 https://anses.hal.science/anses-03322732

Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Potential of existing online 24-hour dietary recall tools for national dietary surveys

Rozenn Gazan¹, Florent Vieux¹, Ségolène Mora¹, Sabrina Havard², Carine Dubuisson²

¹ MS-Nutrition, 27 boulevard Jean Moulin, 13005 Marseille, France

²Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France

Corresponding author: Rozenn Gazan, rozenn.gazan@ms-nutrition.com, +334 91 32 45 94

Short title: Online 24hDR for national diet surveys

Acknowledgements: The authors would like to thank all persons who reviewed and supplemented the information collected: Simone Lemieux from Université Laval, Canada; Polly Page and Toni Steer, University of Cambridge, UK; Ivan Poliakov, Newcastle University, UK; Maria Ana Kadosh, University of Lisboa, Portugal; the National dietary assessment research team from the Swedish Food Agency; Ms Sarah Beer, University of Leeds, UK; Antje Hebestreit from the I.Family project; Valérie Deschamp, University of Paris, France; My Good Life team, Paris, France; Kate Storey, University of Alberta, Canada; ASA24 Support team, National Cancer Institute, USA; Jeanne de Vries, Wageningen University, the Netherlands.

This is an Accepted Manuscript for Public Health Nutrition as part of the Cambridge Coronavirus Collection. This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI 10.1017/S1368980021003517

Public Health Nutrition is published by Cambridge University Press on behalf of The Nutrition Society

Financial Support: The study was supported by ANSES.

Conflict of Interest: S.H. and C.D. have no conflicts of interest. R.G, S.M. and F.V. are employees of MS-Nutrition.

Authorship: R.G. designed the study, collected, analyzed and interpreted the data, and wrote the manuscript. C.D., S.H. designed the study and contributed to interpretation of the data. S.M. contributed to data collection and interpretation of the data. F.V. contributed to the analysis, and assisted in writing the paper. All the authors reviewed the manuscript.

Ethical Standards Disclosure: Not applicable

Abstract:

Objective: To describe existing online 24-hour dietary recall (24hDR) tools in terms of functionalities and ability to tackle challenges encountered during national dietary surveys, such as maximizing response rates and collecting high-quality data from a representative sample of the population, while minimizing the cost and response burden.

Design: A search (from 2000 to 2019) was conducted in peer-reviewed and grey literature. For each tool, information on functionalities, validation and user usability studies, and potential adaptability for integration into a new context was collected.

Setting: Not country-specific

Participants: General population

Results: Eighteen online 24hDR tools were identified. Most were developed in Europe, for children ≥ 10 years old and/or for adults. Eight followed the five multiple-pass steps, but used various methodologies and features. Almost all tools (except three) validated their nutrient intake estimates, but with high heterogeneity in methodologies. User usability was not always assessed, and rarely by applying real-time methods. For researchers, eight tools developed a web platform to manage the survey and five appeared to be easily adaptable to a new context.

Conclusions: Among the eighteen online 24hDR tools identified, the best candidates to be used in national dietary surveys should be those that were validated for their intake estimates, had confirmed user and researcher usability, and seemed sufficiently flexible to be adapted to new contexts. Regardless of the tool, adaptation to another context will still require time and funding, and this is probably the most challenging step.

Keywords: Online 24-hour dietary recall tools; Dietary assessment methodologies; National dietary surveys; User usability; Researcher usability

INTRODUCTION

National food consumption surveys are the main method used to monitor food consumption trends, nutritional status, and exposure to hazardous substances in a population, or to evaluate the impact of dietary policies. Ensuring the representativeness of the sample population and collecting accurate data are the biggest challenges⁽¹⁾. Since 2007, a decrease in response rates, defined as the ratio between the number of participants and all expected interviews (including unreachable and ineligible individuals), has been observed in many epidemiologic studies⁽²⁾, as reported in food consumption surveys in several European countries^(3,4), and the United States⁽⁵⁾. The reasons for refusal may include an increase in requests for study participation, declining trust in science, and increasingly complex research protocols^(2,3). As an example, in France, the previous 7-day self-administered paper food records methodology^(6,7) has shifted to interview-led 24-hour dietary recalls (24hDR) in the most recent cross-sectional Individual and National Study on Food Consumption 3 (INCA3) conducted in 2014-2015. The new protocol required four contacts to complete the dietary recalls after having agreed to take part, compared to two contacts in the INCA2 survey. This change may have had a negative impact on the response rate which decreased by about 20 percentage points compared to the INCA2 study. This led to an increase in the duration of fieldwork and in costs to ensure representative population sample⁽⁸⁾. There is a need to shift toward more user-friendly tools and to adapt surveys to the population's current lifestyle (e.g. longer working hours⁽²⁾), while maintaining high data quality at an acceptable cost.

A wide range of technological options for dietary assessments are available⁽⁹⁾. They can be categorized as computer-based (offline or online), mobile-based, or image-based tools. Offline computer-based tools have already been used in several national surveys^(10–14) and have shown some limitations, in particular for data management^(8,15–17). For instance, adapting GloboDiet software to European national surveys, as well as checking and cleaning the collected data according to the FoodEx2 classification, was very time-consuming and costly^(16–18). Other technologies such as online computer-based, mobile-based, or image-based tools have rarely been used in national dietary surveys, probably because of doubts about their acceptability within the population, or a lack of evidence about their validity and costs to collect data that are both nationally representative and accurate⁽¹⁵⁾.

Regarding mobile-based tools collecting dietary intakes, most were developed for commercial purposes^(9,19,20), often with the aim of helping individuals to manage their weight^(9,19,21). These

tools may lack validity and transparency^(19,22), and they require that a large proportion of the population has a smartphone. A mobile-based solution not fully online, called INDDEX24, has been designed for low- and middle income countries (LMIC)^(23,24) to fill the lack of tools meeting specific constraints in those countries (low smartphone penetration, low literacy, lack of connectivity, etc.)^(22,25). The tool includes a tablet and mobile application available online and offline, as well as a web platform for data management. This tool, is currently in the process of being validated and represents potential for specific national dietary surveys. Barcode scanning applications usually used on mobile might be valuable for dietary assessments, but current tools are not reliable for use in national surveys without an extensive development phase and validation studies⁽²⁶⁾. As mobile-based tools, various technologies of image-based tools are available but all require further development to be validated on a wide range of food products and on a large sample size of individuals^(27–29).

Online computer-based tools (mainly using 24hDR) appear to be the most mature technology to be adapted to national food consumption surveys without requiring long and costly development steps. Importantly, some of them have already been used in large-scale epidemiological studies^(30–34), and they were designed to be easily adaptable to other populations^(35–37). They can be adapted to smartphones, and many have been validated among children and/or adults^(22,38). To our knowledge, only one review focuses on web- and computer-based 24hDR⁽³⁸⁾. In the Timon et al. review⁽³⁸⁾, common design features and the methods used to assess the ability of 24hDR tools to accurately assess nutritional and dietary intakes have been fully detailed, but no information about user and researcher usability were reported⁽³⁸⁾.

To tackle the challenges encountered by national dietary surveys, such as maximizing the response rate and collecting data from a representative sample of the population of interest while optimizing the ratio between cost and data quality, existing online 24hDR seem to have potential for the collection of good quality data while being less burdensome for the respondent and investigator. The aim of this study was to describe existing online 24hDR tools in diverse aspects, such as functionalities, validation of nutrient estimations, user and researcher usability, and potential adaptability for integration into national dietary surveys.

METHODS

Terminology

Here, **validity** means the extent to which a tool measures what it is intended to measure. The validity of dietary instruments is generally assessed by comparing nutrients and/or food intake estimates with another method considered the *gold-standard*, which can be subjective (24hDR, food diary, FFQ, etc.) or objective (biomarkers, observational studies, etc.)^(39,40). According to the ISO 9241-11:2018 Standard ⁽⁴¹⁾, **user usability** is a measure of how well a user can learn and correctly use the tool's functions, the ease of use, and user satisfaction in terms of whether a user can achieve his or her goals when using the tool. User usability is assessed using retrospective methods such as questionnaires, administered after experience of the tool, and/or real-time methodologies such as concurrent think-aloud protocols⁽⁴²⁾. In this paper, the term **flexibility** means the extent to which a tool can be easily modified and adapted to be used in a context other than the one for which the tool was developed. To simplify the manuscript, the term **food** is used instead of "food and beverages" to describe the identification of all foods and beverages declared as consumed by the respondent.

Search strategy

Online computer-based self-administered 24hDR tools were identified from reviews identified using a first search on Pubmed with the following terms, alone or in combination in the title or abstract: "survey", "tool", "instrument", "assessment", "questionnaire", "measurement", "diet", "dietary", "nutrient", "food", "intake", "dietary pattern", "dietary assessment", "consumption", "web", "online", "remote", "digital", "software", "application", "technology", "ehealth", and "review", "meta-anal*", "systematic". For the present paper, only two reviews including an evaluation and description of 24hDR tools were retained (Timon *et al.*⁽³⁸⁾ and Bell *et al.*⁽⁴³⁾). Keywords were also used to identify relevant grey literature in Google, such as Timmins *et al.*⁽⁴⁴⁾ and Coates *et al.*⁽²⁵⁾, leading to the identification of two reports. From these four reviews or reports, focusing on tools published between 2000 and 2016, the authors identified a list of 24hDR tools. An additional search with the same keywords (except "review", "meta-anal*", "systematic") was conducted to update the list and identify other tools published after the reviews or reports (published between 2017 and 2019) on PubMed and on Google in order to identify commercial tools without scientific publications.

Description criteria

For each tool, general characteristics, dietary intake collection methodology, as well as validation methodology and user usability were assessed based on the scientific literature and/or published reports. Functionalities and the method used to collect dietary intakes were described according to the United States Department of Agriculture (USDA) 5-step multiple-pass 24hDR method, a standardized and structured interview to record dietary intakes, during which several cues are used to help the respondent to remember and detail as accurately as possible all foods consumed⁽⁴⁵⁾. Additionally, information on the tools' flexibility to be adapted to another context was collected. All criteria chosen to describe the tool are reported in **Figure 1**.

Once tables were considered to be as complete as possible, based on available published papers or reports, phone or online video unstructured interviews were conducted with the corresponding authors of the studies, or the owner or developer of each tool in October 2019. The aim of the interviews was to check the already collected information, to validate specific points or to add information that could not be found in the literature. All collected information on validation and user usability studies as well as functionalities to collect dietary intakes were from published papers, whereas certain general characteristics (in particular available languages, last version, type of medium), and all information on flexibility were directly collected from the tool owner or developer.

A letter was assigned to each tool and used in the tables and text to refer to it when necessary.

RESULTS

General description

The identification of online 24hDR tools cited in the reviews and reports led to the selection of 13 tools as follows (with the corresponding letter) (**Figure 2**): Automated Self-Administered 24hDR (A, ASA24)⁽⁴⁶⁾, Children's and Adolescents' Nutrition Assessment and Advice on the Web (B, CANAA-W) (previously Young Adolescents' Nutrition Assessment on Computer, YANA-C)^(47,48), Computer-Assisted Personal Interview System (C, CAPIS)⁽⁴⁹⁾, Compl-Eat (D)⁽⁵⁰⁾, DietAdvice (E)⁽⁵¹⁾, DietDay (F)⁽⁵²⁾, Web-based Food Behaviour Questionnaire (G, FBQ)⁽⁵³⁾, Food Record Checklist (H, FoRC)⁽⁵⁴⁾, INTAKE24 (I, previously Self-Completed Recall and Analysis of Nutrition, SCRAN24)⁽⁵⁵⁾, Measure Your Food On

One Day (J, myfood24)⁽⁵⁶⁾, NutriNet-Santé (K)⁽³¹⁾, Portuguese self-administered computerized 24hDR (L, PAC24)⁽⁵⁷⁾ and Web-Survey of Physical Activity and Nutrition (M, Web-SPAN)⁽⁵⁸⁾. Five other online 24hDR, published between 2016 and 2019 were added (**Figure 2**): ClinShare (N), Creme Diet (O, published under the name foodbook24)⁽⁵⁹⁾, Web-based 24hDR (P, R24W)⁽⁶⁰⁾, RiksmatenFlex (Q)⁽⁶¹⁾ and Self-Administered Children, Adolescents, and Adult Nutrition Assessment (R, SACANA)⁽⁶²⁾. In all, eighteen online 24hDR tools were selected for this study (**Figure 2**).

A general description of the eighteen identified tools is available in Table 1. Among them, eleven (B⁽⁴⁷⁾, D⁽⁵⁰⁾, H⁽⁵⁴⁾, I⁽⁵⁵⁾, J⁽⁵⁶⁾, K⁽³¹⁾, L⁽⁵⁷⁾, N, O⁽⁵⁹⁾, Q⁽⁶¹⁾, R⁽⁶²⁾) were developed in Europe, five $(A^{(46)}, F^{(63)}, G^{(53)}, M^{(64)}, P^{(65)})$ in North America (United States and Canada), one $(E^{(51,66)})$ in Australia, and one $(C^{(49)})$ in South Korea. Five $(A^{(67)}, I^{(68)}, J^{(36)}, K^{(69)}, R^{(62)})$ have already been adapted to be used in another country, and in particular, two $(I^{(68)}, J^{(70)})$ have already been adapted for low-income countries (Middle-East countries, Peru or the South-Asia region). Only one language is available in twelve tools (C - H, K, L - O, Q) (among them six in English: E – H, M, O), while the other six tools (C, D, K, L, N, Q) are in various languages. Three tools (D, I, Q) have been adapted or are being adapted for all populations (including infants), while the others were developed for teenagers and/or adults. Eight tools (A, I – K, N - Q) can (or will) be used on computers, mobiles and tablets, thanks to an automatic adjustment of the web page to the tool's size (i.e. responsive design). Except four tools (G, H, K, M), all have an integrated food composition database, allowing for automatic assessment of individual food and nutrient intakes for the researcher. Eleven tools (A – C, F, G, I – K, M, O, R) have a functionality to provide the respondent with a summary of their dietary intakes and for some tools, dietary advice ^(71–74). While four tools (E, I, L, R) collect food intake data only, some tools collect other information such as dietary supplements (A, D, F, J, O), the level of physical activity (via a questionnaire) (B, C, K, M, N, Q), anthropometry (B, C, K, M, N), sleeping habits (A), or other information on food habits (G, H, K, M, N, P, Q).

Method of dietary intake collection

Table 2 describes the main functionalities of the tools to collect dietary intakes.

Eight tools (A, B, D, F, H, I, O, R) display the same steps as the USDA multiple-pass method, but not necessarily in the same order and not necessarily using the same method to collect the "Quick list" (e.g. identification in a pre-defined list of foods, using free keywords or food

group checkboxes). Other tools either do not include the "Forgotten food list" step (n=3; C, E, L) or do not include the "Quick list" step (n=7; G, J, K, M, N, P, Q). Tools without a "Quick list" ask the respondent to provide all information (identification, description and quantification of the food) in one step for each consumption occasion of the day. The time of consumption is always requested, and other information, including the place of consumption (n=10; A, C, K – R), place of meal preparation (n=1; K), social context (n=8; A, K – N, P – R), and presence of a screen (n=5; A, K, L, N, P) can be requested depending on the tool.

The whole list of foods from which the respondent selects the one consumed depends on the study and version of the tool, and can contain either generic foods only (often from national food composition databases), or generic and specific brand products (Table 1). In order to ease food selection by the user, the selected tools use different food identification systems (either in the "Quick list" or "Detail cycle" steps):

- using a keyword search engine (n=13; A, C, D, F, I L, N R),
- by selecting within a hierarchical tree (n=13; A F, H, I, K, N, O, P, R),
- by selecting within a dropdown list (n=2; M, G),
- by filtering foods (n=2; A, J) by category, brand, type of food (generic or brand) or from a list of favorite foods,
- by selecting from pictures (n=1, for specific food groups; R).

Five tools ($B^{(72)}$, $I^{(34)}$, $J^{(56)}$, $O^{(59)}$, $Q^{(30)}$) have improved their keyword search engine by including synonyms and different spelling options or brand names to help participants find the correct food or to allow the identification of foods by matching more than one search term (e.g. chocolate biscuits). Other functionalities helping the respondent to report the correct food consumed were identified, such as the creation of personal recipes (n = 7; A, D, I, J, N, P, R), or reporting a new food (free text entry) not yet in the integrated food list (n = 5; D, I, K, Q, R).

Portion size estimation is requested, either directly after having identified a food (n = 7; G, J, K, M, N, P, Q), or in a second step after having identified all foods consumed during the day (n = 11; A – F, H, I, L, O, R). Quantification can be entered directly in grams or volumes (n = 6; C, D, J – L, N), or using portion-size estimation aids such as food portion pictures (n = 16; A – C, E – M, O – R), standard units of consumption (n = 14; A, C, D, G, I – R), or household measures (n = 8; B, D, F, I, L, P, Q, R). Only two tools do not use food pictures (D, N). To

our knowledge, only one tool (I) also requests, for some foods, the amount of food that is left over. The type of packaging or way of consumption can also be asked to refine the picture to display (e.g. consumption of an entire fruit or in pieces, consumption of a soda in a bottle, a can, or a cardboard container) ⁽⁵⁵⁾. For beverages, one tool (I) uses a cursor to fill the container chosen by the respondent (glass, bowl, etc.).

Method of validity assessment

Table 3 describes the methods used to validate nutrient and/or food group intake estimates using the tool, and Table 4 describes user usability assessment studies.

Validation of nutrient intake estimates was assessed in twenty-seven studies (n=15 tools). Three tools (B, C, N) had no publication on the validation of nutrient intake estimates. Six tools ($A^{(75-77)}$, $E^{(78,79)}$, $H^{(54)}$, $M^{(64)}$, $O^{(59)}$, $P^{(80,81)}$) compared nutrient intake estimates to those from food diaries, seven $(A^{(82-84)}, D^{(50)}, G^{(53)}, I^{(85)}, J^{(86,87)}, K^{(31)}, Q^{(30)})$ to nutrient intakes estimated by interview-led 24hDR, and three (A⁽⁷⁷⁾, F⁽⁸⁸⁾, R⁽⁸⁹⁾) to estimates from FFQs. The number of days of dietary measurements, as well as the time between data collection using the tool and the reference method varied widely between studies. For instance, from one $(A^{(77,83,90)}, E^{(78,79)}, G^{(53)}, K^{(31)}, L^{(91)})$ to six consumption days $(A^{(75)}, F^{(92)})$ were collected using the online 24hDR tool in validation studies. Four tools (G⁽⁵³⁾, I⁽⁸⁵⁾, J⁽⁸⁷⁾, K⁽³¹⁾) were validated against a reference method administered the same day^(31,53,85,87), whereas other tools administered the reference method a few weeks before or after use of the tool. Ten tools $(A^{(75,77,82,83)}, D^{(93)}, F^{(88)}, I^{(68)}, J^{(86)}, L^{(91)}, O^{(59)}, P^{(94,95)}, Q^{(30)}, R^{(89)})$ had validation studies using objective measurements (biomarkers or energy expenditure n=10 studies, corresponding to nine tools $A^{(75,77,82)}$, $D^{(93)}$, $F^{(88)}$, $I^{(68)}$, $J^{(86)}$, $O^{(59)}$, $P^{(94,95)}$, $O^{(30)}$, $R^{(89)}$; feeding studies n=1 study: $A^{(83)}$; or direct observation n=1 study: $L^{(91)}$), nine (A, D, F, I, J, O - R) of which also had a validation study with a subjective reference measurement (in the same or another study). Six tools ($A^{(75,77,82)}$, $F^{(88)}$, $J^{(86)}$, $O^{(59)}$, $Q^{(30)}$, $R^{(89)}$) were validated with both subjective and objective reference measurements in the same study, as recommended by Timon et al.⁽⁹⁶⁾. Four tools (A⁽⁸²⁾, I⁽⁸⁵⁾, L⁽⁹¹⁾, P⁽⁹⁵⁾) assessed the proportion of exact "matches", "omissions" or "inclusions".

Data were often analyzed using a combination of statistical methods, measuring either the strength of an association at the individual level (correlation coefficients), the overall agreement between two measurements (mean comparisons), the agreement at the individual

level (cross-classification & weighted Kappa coefficient), or the presence, direction and extent of bias between two measurements (graphics of Bland & Altman). The number of statistical analyses was between 2 and 5, with four studies out of 27 (G⁽⁵³⁾, O⁽⁵⁹⁾, P⁽⁸⁰⁾, Q⁽³⁰⁾) having more than 3 different statistical tests, as recommended by Lombard et al. to reflect each facet of validity⁽⁹⁷⁾. Publication results indicated overall moderate to good validity of online 24hDR according to the statistical tests, and estimated nutrient intakes were comparable to the reference values. For instance, in a control feeding study, gaps between true and reported energy, nutrient, and food group intakes were comparable between the online tool J and interview-led 24hDR, with several biomarkers⁽⁸⁶⁾. Spearman correlations for urinary and plasma biomarkers were similar for both the online tool O and 4-day semi-weighed food diaries⁽⁵⁹⁾. Overall, based on their validation studies, each tool is valid to estimate nutritional intakes (data not shown).

User usability assessment

User usability was assessed in fifteen studies (n=11 tools, A – C, F, G, I – K, O – Q), among which one tool (Q) assessed usability but without publishing the results. In eight studies (n=7 tools, $A^{(35,84)}$, $C^{(49)}$, $F^{(63)}$, $I^{(98)}$, $K^{(31)}$, $O^{(59)}$, $P^{(65)}$), user usability was assessed only using a retrospective questionnaire administered after data collection. The System Usability Scale (SUS)⁽⁹⁹⁾, a validated questionnaire of ten items measuring the overall usability of a system (i.e. software, website, and application) was used in three studies (n=2 tools, $I^{(55)}$, $J^{(36,100)}$). SUS-scores at least equal to 70 (out of 100) are considered "good" by Bangor et al.⁽¹⁰¹⁾. Concerning methods other than questionnaires, we can mention focus groups⁽⁴⁷⁾ (n=1 tool, B), a retrospective methodology to collect qualitative information and real-time methods such as think-aloud protocols^(53,55,57,102) (n=4 tools, A, G, I) as well as eye-tracking⁽⁵⁵⁾ (n=1 tool, I). In four studies (n=3 tools, A⁽³⁵⁾, I⁽⁵⁵⁾, J^(36,100)), both retrospective and real-time methods were used. Overall satisfaction could be considered good, but several common issues were reported: difficulties in identifying the correct food (A^(35,102), I^(55,98), J^(36,100)), in particular when the respondent used several words (e.g. "mince, potatoes"), issues in navigating within the system (A^(35,102), I⁽⁵⁵⁾, J⁽¹⁰⁰⁾), and difficulties logging in (A⁽³⁵⁾, I⁽⁹⁸⁾).

Tool flexibility

Among the eighteen tools, thirteen (B - H, L - Q) have not been adapted for use in another country (Table 1). Information about how the tool could be adapted from the investigator of the study and/or from the tool's technical support team was collected for eleven tools. For eight tools (A, D, I – K, N, O, R), changes to the food list and addition of full nutritional composition are feasible by providing the data to technical support, as a template file with a specific structure. Addition of another language is feasible for six tools (A, I - K, O, R). A web platform is available for the investigator of the study for eight tools (A, D, I, J, N, O, Q, R). On the platform, it is possible, depending on the tool, to edit certain parameters: adding new foods, changing nutritional composition, amending portion size pictures, activating functionalities or questions, and managing a study (sending invitation emails, checking responses, exporting the databases). Finally, tools A, I, J, O and R, seemed to be the most easily flexible to a new context (web platform for the investigator of the study, possible addition of another language and modification of the input data). Only three tools (I, O and soon A) allow flexibility to store the collected data on a server of the investigator team. For two other tools (K, R), data can only be exported on request, limiting ongoing monitoring of the study.

DISCUSSION

Eighteen online 24hDR tools were identified and described in detail. Most were developed in Europe, for children 10 years of age and older and/or for adults. All tools are self-administered and collect time of consumption, identification of all foods and beverages consumed, and quantification of the amount consumed, before checking and validating the entries. The common information collected by all tools makes it possible to obtain high quality intake estimates, showing promising capabilities for their use in national food intake surveys. Beyond these similarities, each tool has its own specificities regarding the order and functionalities of the multiple-pass steps to help identify and quantify the foods consumed. These specificities may have an impact on user usability, which was assessed for fewer tools than the validity of nutritional intakes. User usability should be assessed more often, especially for tools to be used in national dietary surveys. Moreover, the ability of these tools to be adapted to new environments needs to be carefully evaluated, in view of implementing them in different countries. This point is, however, rarely addressed in reports or articles. This

is why the authors of the present study needed to conduct unstructured interviews with the owner or developer of each tool to obtain more information.

Eleven tools were assessed regarding user usability, mainly through retrospective data collection of user satisfaction using questionnaires. Initiated by Eysenbach in 2005⁽¹⁰³⁾, the impact of design features on adherence, i.e. the degree to which the user correctly uses the tool as designed and intended by the developer $^{(104)}$, has been studied in particular in online intervention programs on mental health, lifestyle or chronic care, to prevent non usage and dropout attrition ^(105,106). For instance, it is recognized that personalization of functionalities (e.g. using an avatar for children) or content (e.g. providing tailored messages) for a specific target group or individual increases user efficiency⁽¹⁰⁵⁾. Theoretical models on adherence to web-based interventions have been developed⁽¹⁰⁶⁾ and could help to identify recommendations for designers to make the tool more attractive and easier to use. Among American adults, ASA24 (tool A) was preferred to interview-led AMPM software for 70% of individuals⁽⁸⁴⁾. The attrition rate, defined as the percentage of individuals lost between the first and second 24hDR, was slightly lower using ASA24 (tool A) (6%) compared to AMPM (11%), but no analyses were conducted to further understand the effect of the web-based system on this difference⁽⁸⁴⁾. More research is needed in this field, to better identify, quantify and qualitatively describe issues, and find opportunities to improve available tools.

Among the issues raised in user usability studies, a common one observed across tools is the ability to easily identify the correct food. Some tools have improved the keyword search engine^(30,59,72,100), but optimizing the search mechanism remains a field of development to improve attractiveness and user success. Doing so may improve user adherence, response rates, and the validity of dietary data. Identifying the correct food is also highly dependent on the quality of the integrated food list, which must be diversified enough and representative of the population's food habits. With the development of online platforms (e.g. OpenFoodFact⁽¹⁰⁷⁾), dedicated to providing product labeling information on branded foods available on the market, the possibility of integrating these exhaustive databases into 24hDR tools could be considered. There is no absolute agreement on the advantages of using branded products rather than generic foods in the database of the recall tools⁽³⁶⁾ but for the researcher, the collection of dietary data at branded level can provide many descriptors with less data management: the type of packaging, presence of a nutrition or health claim, and fortification. However, when foods are at brand level, the challenge is to link each food to full nutritional

composition (macronutrient and micronutrient content), generally available for generic foods. To reduce data management for researchers, automatic or semi-automatic procedures have recently been proposed to match foods with food composition tables, using fuzzy matching (comparison between two character strings) to provide a similarity score between food names and/or machine learning classifiers^(108,109), or by estimating the percentage of agreement based on the available nutritional content between the brand and generic food⁽¹¹⁰⁾. When the choice is to use a generic food database, the tool must be adapted to collect additional information about the food consumed concerning aspects relevant to the study aims (e.g. source of food: purchased or home-made). For instance, ASA24 (tool A) uses an extensive database of more than 13 million pathways to collect detailed information on the foods consumed⁽¹¹¹⁾, but collection of the additional facets increases respondent burden. The development and integration of barcode scanning to identify foods⁽²⁶⁾ may improve usability in the next few years, and could ease data collection for the user and investigator of the study. Barcode scanning is, however, not yet integrated in published online 24hDR tools.

One challenge for 24hDR tools to be used at national level, is to ensure representativity and ideally to be adaptable to different countries. Ensuring representativity at the national level is challenging because studies have shown that age^(34,56,84,112) and income or educational level^(34,113,114) affected user usability with online 24hDR. As a consequence, protocols must be tailored to the subpopulation (e.g. data collection at school^(30,48,85,87), to provide 24-H support, to allow collection of data with an interviewer⁽³⁴⁾, to provide public internet access, to offer a specific version for children by simplifying the language and adding an avatar⁽¹¹⁵⁾). If the protocol or tool cannot be adapted, the dietary survey could be supplemented with an external study. For instance in France, the Nutri-Bébé 2013 survey, an observational cross-sectional study of children aged 15 days to 35 months living in France, collected detailed food consumption using food diaries filled by the parents, and could supplement national INCA dietary surveys⁽¹¹⁶⁾. Adapting 24hDR to other countries can be very time-consuming and expensive, as previously shown with adaptation of GloboDiet^(8,17,117,118). Most of the online 24hDR tools reviewed in this study were developed for a highly specific context, limiting their potential adaptation. Furthermore, probably because our search criteria included online tools, most of the selected online 24hDR were developed for high income countries, as already highlighted by Bell et al.⁽²²⁾. Therefore, the tools identified may not be suitable for countries with specific constraints, such as low- and middle- income countries (LMIC), in which a limited literacy and numeracy may be source of error when using a self-administered tool⁽¹¹⁹⁾, and where the tool may be unusable in some region with a low internet connectivity^(22,25). But, as mentioned in the results, some of the tools identified in this paper were already or currently being adapted for being used in some LMIC. The development for a new population, such as a new country or age class, requires an update of the pre-integrated food list, food composition database, and food portion pictures to be representative of the population's food habits. This must be followed by new assessment of validity and user usability, as done by Koch et al. for adaptation of myfood24 (tool J) to the German population⁽³⁶⁾. The available languages must also be adapted, if needed. Even though some tools have developed a web platform, easing the integration of new data, or were specifically developed to allow simple updates using file templates, considerable work will be required to construct the integrated database.

A few limitations of this review should be noted. First, our descriptions of the tools were mainly based on information available in papers or reports. Except for six tools (tools A, I -K; O, R), which had a demo version freely available or a presentation video, the authors of this study did not test the tools, and some information may have been missed. However, for eleven tools, the owner and/or developer reviewed and validated the requested information, limiting inaccuracies. Second, we chose to describe only the method used in validation studies without providing the results, which may limit appraisal of each tool. As noted by Timon et al.⁽⁹⁶⁾, high heterogeneity in the design of validation studies means that studies must be assessed in isolation, without any robust comparison between tools. Additionally, validation and user usability assessment studies are specific to the population studied and must be renewed when applied to a different context. Nevertheless, our results provide an overview of the quality of the validation and user usability studies conducted with each tool. Third, in all publications, there is little evidence that using 24hDR is cost-effective, although this argument was often put forward in papers on new technologies^(38,120). Fourth, we choose to not assign a ranking of the tool, because each decision-makers have their own criteria and needs. Our objective was to describe as precisely as possible the tools, regarding various aspects, in order to provide enough information for decision-makers to identify the best opportunities. Finally, the aim of this review was to focus on online 24hDR tools, but technologies are moving rapidly and other technologies, in particular smartphone applications with visual recognition could evolve quickly and be validated for use in large-scale surveys. Likewise, some new validation studies^(94,121-124) or user's usability studies^(73,124) have been published since 2019, after the literature search conducted for this paper. Those articles published since 2019, not described in detail in this paper, are related to tools which were already described in this paper.

CONCLUSION

Eighteen online self-administered 24hDR tools developed and validated in several contexts were identified. Tools that were validated to estimate nutritional and food intakes, that have confirmed user and researcher usability, and that are sufficiently flexible to be adapted to different contexts, are probably the best candidates for use in national dietary surveys, as they are likely to improve response rates and to collect high quality data. Regardless of the tool, adaptation to another context will require time and funding, and this is probably the most challenging step.

REFERENCES

- 1. WHO Regional Office for Europe (2015) *European Food and Nutrition Action Plan* 2015–2020 (2014). Copenhagen, Denmark: WHO.
- Galea S & Tracy M (2007) Participation Rates in Epidemiologic Studies. Ann. Epidemiol. 17, 643–653.
- 3. Ioannidou S, Horváth Z & Arcella D (2020) Harmonised collection of national food consumption data in Europe. *Food Policy* **96**, 101908.
- 4. Ax E, Warensjö Lemming E, Becker W, et al. (2016) Dietary patterns in Swedish adults; results from a national dietary survey. *Br. J. Nutr.* **115**, 95–104.
- Ahluwalia N, Dwyer J, Terry A, et al. (2016) Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. *Adv. Nutr.* 7, 121–134.
- Dubuisson C, Lioret S, Touvier M, et al. (2010) Trends in food and nutritional intakes of French adults from 1999 to 2007: results from the INCA surveys. *Br. J. Nutr.* 103, 1035–48.
- Lioret S, Dubuisson C, Dufour A, et al. (2010) Trends in food intake in French children from 1999 to 2007: results from the INCA (étude Individuelle Nationale des Consommations Alimentaires) dietary surveys. *Br. J. Nutr.* 103, 585. BioMed Central.
- Dubuisson C, Dufour A, Carrillo S, et al. (2019) The Third French Individual and National Food Consumption (INCA3) Survey 2014–2015: method, design and participation rate in the framework of a European harmonization process. *Public Health Nutr.* 22, 584–600.
- Illner A-K, Freisling H, Boeing H, et al. (2012) Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. *Int. J. Epidemiol.* 41, 1187–203.
- Slimani N, Casagrande C, Nicolas G, et al. (2011) The standardized computerized 24-h dietary recall method EPIC-Soft adapted for pan-European dietary monitoring. *Eur. J. Clin. Nutr.* 65, S5–S15. Nature Publishing Group.
- Blanton CA, Moshfegh AJ, Baer DJ, et al. (2006) The USDA Automated Multiple-Pass Method Accurately Estimates Group Total Energy and Nutrient Intake. J. Nutr. 136, 2594–2599.

- Gurinović M, Milešević J, Kadvan A, et al. (2018) Development, features and application of DIET ASSESS & PLAN (DAP) software in supporting public health nutrition research in Central Eastern European Countries (CEEC). *Food Chem.* 238, 186–194. Elsevier Ltd.
- Daniel CR, Kapur K, McAdams MJ, et al. (2014) Development of a field-friendly automated dietary assessment tool and nutrient database for India. *Br. J. Nutr.* 111, 160–71.
- Caswell BL, Talegawkar SA, Dyer B, et al. (2015) Assessing Child Nutrient Intakes Using a Tablet-Based 24-Hour Recall Tool in Rural Zambia. *Food Nutr. Bull.* 36, 467– 480.
- Amoutzopoulos B, Steer T, Roberts C, et al. (2018) Traditional methods v. new technologies dilemmas for dietary assessment in large-scale nutrition surveys and studies: a report following an international panel discussion at the 9th International Conference on Diet and Activity Methods (ICDAM9), Brisban. J. Nutr. Sci. 7, e11. Cambridge University Press.
- Zhang L, Geelen A, Boshuizen HC, et al. (2019) Importance of details in food descriptions in estimating population nutrient intake distributions. *Nutr. J.* 18, 17. BioMed Central Ltd.
- Bel S & Ridder K De (2018) Belgian national food consumption survey in adolescents and adults. *Belgian Natl. food Consum. Surv. Adolesc. adults* 15. John Wiley & Sons, Ltd.
- 18. Dubuisson C, Carrillo S, Dufour A, et al. (2017) The French dietary survey on the general population (INCA3). *EFSA Support. Publ.* **14**.
- Cade JE (2017) Measuring diet in the 21st century: use of new technologies. Proc. Nutr. Soc. 76, 276–282.
- Eldridge AL, Piernas C, Illner A-K, et al. (2018) Evaluation of New Technology-Based Tools for Dietary Intake Assessment-An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. *Nutrients* 11. Switzerland: .
- 21. Franco RZ, Fallaize R, Lovegrove JA, et al. (2016) Popular Nutrition-Related Mobile Apps: A Feature Assessment. *JMIR mHealth uHealth* **4**, e85. JMIR mHealth and uHealth.

- Bell W, Colaiezzi BA, Prata CS, et al. (2017) Scaling up Dietary Data for Decision-Making in Low-Income Countries: New Technological Frontiers. *Adv. Nutr.* 8, 916. American Society for Nutrition.
- The International Dietary Data Expansion (INDDEX) Project INDDEX24 Mobile App. 2021. https://inddex.nutrition.tufts.edu/inddex24-mobile-app (accessed May 2021).
- Wafa S, Colaiezzi B, Some J, et al. (2020) INDDEX24: An Innovative Global Dietary Assessment Platform to Scale Up the Availability, Access, and Use of Dietary Data. *Curr. Dev. Nutr.* 4, 1180–1180.
- Coates J, Colaiezzi B, Bell W, et al. (2015) INDDEX Priority Technical Criteria and Review of Technology-assisted 24-hour Recall Software Programs. Boston, MA, USA: INDDEX project.
- 26. Maringer M, Wisse-Voorwinden N, Veer P van 't, et al. (2018) Food identification by barcode scanning in the Netherlands: a quality assessment of labelled food product databases underlying popular nutrition applications. *Public Health Nutr.* 22, 1–8. Cambridge University Press.
- 27. Tay W, Kaur B, Quek R, et al. (2020) Current Developments in Digital Quantitative Volume Estimation for the Optimisation of Dietary Assessment. *Nutrients* **12**, 1167.
- Boushey CJ, Spoden M, Zhu FM, et al. (2017) New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods. *Proc. Nutr. Soc.* 76, 283–294.
- Kouvari M, Mamalaki E, Bathrellou E, et al. (2021) The validity of technology-based dietary assessment methods in childhood and adolescence: a systematic review. *Crit. Rev. Food Sci. Nutr.* 61, 1065–1080. Taylor and Francis Inc.
- Lindroos AK, Petrelius Sipinen J, Axelsson C, et al. (2019) Use of a Web-Based Dietary Assessment Tool (RiksmatenFlex) in Swedish Adolescents: Comparison and Validation Study. J. Med. Internet Res. 21, e12572.
- 31. Touvier M, Kesse-Guyot E, Méjean C, et al. (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. *Br. J. Nutr.* 105, 1055–1064.
- 32. Evans CEL, Melia KE, Rippin HL, et al. (2020) A repeated cross-sectional survey assessing changes in diet and nutrient quality of English primary school children's

packed lunches between 2006 and 2016. BMJ Open 10, 29688. BMJ Publishing Group.

- 33. Maher J, Robichaud C & Swanepoel E (2018) Online nutrition information seeking among Australian primigravid women. *Midwifery* **58**, 37–43. Scotland: .
- 34. Rowland M, Adamson A, Poliakov I, et al. (2018) Field Testing of the Use of Intake24—An Online 24-Hour Dietary Recall System. *Nutrients* 10, 1690. Multidisciplinary Digital Publishing Institute (MDPI).
- 35. Kirkpatrick S, Gilsing A, Hobin E, et al. (2017) Lessons from Studies to Evaluate an Online 24-Hour Recall for Use with Children and Adults in Canada. *Nutrients* **9**, 100.
- Koch SAJ, Conrad J, Hierath L, et al. (2020) Adaptation and Evaluation of Myfood24-Germany: A Web-Based Self-Administered 24-h Dietary Recall for the German Adult Population. *Nutrients* 12, 160.
- NCI (National Cancer Institute) Comparison among ASA24® Versions. *Epidemiol. Genomics Res. Progr.* https://epi.grants.cancer.gov/asa24/comparison.html (accessed August 2020).
- Timon CM, van den Barg R, Blain RJ, et al. (2016) A review of the design and validation of web- and computer-based 24-h dietary recall tools. *Nutr. Res. Rev.* 29, 268–280. England: .
- 39. NIH (National Institutes of Health) & NCI (National Cancer Institute) Dietary Assessment Primer. Key Concepts about Valid. https://dietassessmentprimer.cancer.gov/concepts/validation/ (accessed November 2020).
- 40. MRC Epidemiology Unit University of Cambridge DAPA Measurement Toolkit, validity. https://www.measurement-toolkit.org/concepts/validity (accessed November 2020).
- 41. International Organization for Standardization (2018) ISO 9241-11:2018(en) Ergonomics of human-system interaction — Part 11: Usability: Definitions and concepts. *ISO*. https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en (accessed November 2020).
- 42. Birns JH, Joffre KA, Leclerc JF, et al. (2002) Getting the Whole Picture: Collecting Usability Data Using Two Methods --Concurrent Think Aloud and Retrospective Probing. In *Elev. Annu. Meet. Usability Prof.*

- 43. Bell W, Colaiezzi BA, Prata CS, et al. (2017) Scaling up Dietary Data for Decision-Making in Low-Income Countries: New Technological Frontiers. *Adv. Nutr.* 8, 916–932. United States: .
- 44. Timmins KA, Vowden K, Husein F, et al. (2014) Making the best use of new technologies in the National Diet and Nutrition Survey: a review. Leeds, UK: University of Leeds.
- 45. Conway JM, Ingwersen LA, Vinyard BT, et al. (2003) Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. *Am. J. Clin. Nutr.* **77**, 1171–1178. American Society for Nutrition.
- 46. Zimmerman TP, Hull SG, McNutt S, et al. (2009) Challenges in converting an interviewer-administered food probe database to self-administration in the National Cancer Institute Automated Self-administered 24-Hour Recall (ASA24). J. Food Compost. Anal. 22, S48–S51. NIH Public Access.
- 47. Vereecken C, Covents M, Maes L, et al. (2014) Formative evaluation of the dietary assessment component of Children's and Adolescents' Nutrition Assessment and Advice on the Web (CANAA W). *J. Hum. Nutr. Diet.* **27**, 54–65. John Wiley & Sons, Ltd (10.1111).
- 48. Vereecken CA, Covents M, Sichert-Hellert W, et al. (2008) Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. *Int. J. Obes.* **32**, S26–S34.
- Shin S, Park E, Sun DH, et al. (2014) Development and Evaluation of a Web-based Computer-Assisted Personal Interview System (CAPIS) for Open-ended Dietary Assessments among Koreans. *Clin. Nutr. Res.* 3, 115. Korean Society of Clinical Nutrition (KAMJE).
- 50. Meijboom S, van Houts-Streppel MT, Perenboom C, et al. (2017) Evaluation of dietary intake assessed by the Dutch self-administered web-based dietary 24-h recall tool (Compl-eatTM) against interviewer-administered telephone-based 24-h recalls. *J. Nutr. Sci.* 6, e49. Cambridge University Press.
- Probst YC, Lockyer L, Tapsell LC, et al. (2007) Towards nutrition education for adults: a systematic approach to the interface design of an online dietary assessment tool. *Int. J. Learn. Technol.* 3, 32. Inderscience Publishers.

- Arab L, Wesseling-Perry K, Jardack P, et al. (2010) Eight Self-Administered 24-Hour Dietary Recalls Using the Internet Are Feasible in African Americans and Whites: The Energetics Study. J. Am. Diet. Assoc. 110, 857–864.
- Hanning RM, Royall D, Toews JE, et al. (2009) Web-based food behaviour questionnaire: Validation with grades six to eight students. *Can. J. Diet. Pract. Res.* 70, 172–178.
- 54. Comrie F, Masson LF & McNeill G (2009) A novel online Food Recall Checklist for use in an undergraduate student population: a comparison with diet diaries. *Nutr. J.* 8, 13.
- Simpson E, Bradley J, Poliakov I, et al. (2017) Iterative Development of an Online Dietary Recall Tool: INTAKE24. *Nutrients* 9. Switzerland: .
- 56. Carter M, Albar S, Morris M, et al. (2015) Development of a UK Online 24-h Dietary Assessment Tool: myfood24. *Nutrients* **7**, 4016–4032.
- 57. Carvalho MA, Santos O, Rito AI, et al. (2014) Development of a new computer program to assess dietary intake in portuguese school-age children: a qualitative approach. *Acta Pediatr Port* **45**, 116–123.
- 58. Storey KE, Forbes LE, Fraser SN, et al. (2009) Diet quality, nutrition and physical activity among adolescents: The Web-SPAN (Web-Survey of Physical Activity and Nutrition) project. *Public Health Nutr.* **12**, 2009–2017.
- 59. Timon CM, Blain RJ, McNulty B, et al. (2017) The Development, Validation, and User Evaluation of Foodbook24: A Web-Based Dietary Assessment Tool Developed for the Irish Adult Population. J. Med. Internet Res. 19, e158. Journal of Medical Internet Research.
- 60. Jacques S, Lemieux S, Lamarche B, et al. (2016) Development of a web-based 24-h dietary recall for a French-Canadian population. *Nutrients* **8**. MDPI AG.
- Moraeus L, Lemming EW, Hursti U-KK, et al. (2018) Riksmaten Adolescents 201617: A national dietary survey in Sweden design, methods, and participation. *Food Nutr. Res.* 62. SNF Swedish Nutrition Foundation.
- Hebestreit A, Wolters M, Jilani H, et al. (2019) Web-Based 24-h Dietary Recall: The SACANA Program. In *Instruments Heal. Surv. Child. Adolesc.*, Springer S, pp. 77–102 [Bammann K, Lissner L, Pigeot I, et al., editors]. Springer Nature Switzerland.

- Arab L, Wesseling-Perry K, Jardack P, et al. (2010) Eight Self-Administered 24-Hour Dietary Recalls Using the Internet Are Feasible in African Americans and Whites: The Energetics Study. J. Am. Diet. Assoc. 110, 857–864.
- Storey KE & Mccargar LJ (2012) Reliability and validity of Web-SPAN, a web-based method for assessing weight status, diet and physical activity in youth. J. Hum. Nutr. Diet. 25, 59–68.
- 65. Jacques S, Lemieux S, Lamarche B, et al. (2016) Development of a Web-Based 24-h Dietary Recall for a French-Canadian Population. *Nutrients* **8**. Switzerland: .
- 66. Probst Y, Jones H, Lin S, et al. (2009) Updating the DietAdvice website with new Australian food composition data. *J. Food Compos. Anal.* **22**, S37–S41.
- 67. NCI (National Cancer Institute) (2020) Current and past versions of the ASA24 respondent website. https://epi.grants.cancer.gov/asa24/respondent/ (accessed May 2021).
- 68. Foster E, Lee C, Imamura F, et al. (2019) Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis. *J. Nutr. Sci.* **8**, e29.
- 69. Equipe de Recherche en Epidémiologie Nutritionnelle (EREN) (2013) étude NutriNet-Santé Belgique. https://www.etude-nutrinet-sante.be/ (accessed May 2021).
- Scarpa G, Berrang-Ford L, Bawajeeh AO, et al. (2021) Developing an online food composition database for an Indigenous population in south-western Uganda. *Public Health Nutr.* 24, 2455–2464.
- 71. Institute) N (National C (2020) ASA24® Respondent Nutrition Reports. https://epi.grants.cancer.gov/asa24/respondent/nutrition-report.html (accessed May 2020).
- 72. Vereecken C, Covents M, Maes L, et al. (2014) Formative evaluation of the feedback component of children's and adolescents' nutrition assessment and advice on the web (CANAA-W) among parents of schoolchildren. *Public Health Nutr.* 16, 15–26. Cambridge University Press.
- 73. Timon CM, Walton J, Flynn A, et al. (2021) Respondent Characteristics and Dietary Intake Data Collected Using Web-Based and Traditional Nutrition Surveillance Approaches: Comparison and Usability Study. *JMIR Public Heal. Surveill.* 7, e22759.

- 74. Rowland M, Rose J, McLean J, et al. (2020) *Pilot of Intake24 in the Scottish Health Survey*. Scotland: .
- 75. Park Y, Dodd KW, Kipnis V, et al. (2018) Comparison of self-reported dietary intakes from the Automated Self-Administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. *Am. J. Clin. Nutr.* **107**, 80–93.
- 76. Frankenfeld CL, Poudrier JK, Waters NM, et al. (2012) Dietary Intake Measured from a Self-Administered, Online 24-Hour Recall System Compared with 4-Day Diet Records in an Adult US Population. J. Acad. Nutr. Diet. 112, 1642–1647. J Acad Nutr Diet.
- 77. Yuan C, Spiegelman D, Rimm EB, et al. (2018) Relative Validity of Nutrient Intakes Assessed by Questionnaire, 24-Hour Recalls, and Diet Records as Compared With Urinary Recovery and Plasma Concentration Biomarkers: Findings for Women. Am. J. Epidemiol. 187, 1051–1063.
- 78. Probst Y, Sarmas V & Tapsell LC (2009) Comparison of computerised dietary assessments with diet history and food record data at baseline in an Australian foodbased clinical trial. In 33rd Natl. Nutr. Databank Conf.
- 79. Probst Y, Sarmas V, O'Shea J, et al. (2009) Relative validity of three different dietary assessment tools as a part of a food-based clinical trial for weight loss. In *Dietitians Assoc. Aust. Natl. Conf.*, pp. A25–A53. Darwin: .
- Lafrenière J, Laramée C, Robitaille J, et al. (2019) Relative validity of a web-based, self-administered, 24-h dietary recall to evaluate adherence to Canadian dietary guidelines. *Nutrition* 57, 252–256. Elsevier Inc.
- Lafrenière J, Laramée C, Robitaille J, et al. (2018) Assessing the relative validity of a new, web-based, self-administered 24 h dietary recall in a French-Canadian population. *Public Health Nutr.* 21, 2744–2752.
- 82. Kirkpatrick SI, Subar AF, Douglass D, et al. (2014) Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am. J. Clin. Nutr. 100, 233–240. American Society for Nutrition.
- 83. Kirkpatrick SI, Potischman N, Dodd KW, et al. (2016) The Use of Digital Images in 24-Hour Recalls May Lead to Less Misestimation of Portion Size Compared with

Traditional Interviewer-Administered Recalls. J. Nutr. 146, 2567–2573. Oxford University Press (OUP).

- Thompson FE, Dixit-Joshi S, Potischman N, et al. (2015) Comparison of Interviewer-Administered and Automated Self-Administered 24-Hour Dietary Recalls in 3 Diverse Integrated Health Systems. *Am. J. Epidemiol.* 181, 970–978. Oxford University Press.
- 85. Bradley J, Simpson E, Poliakov I, et al. (2016) Comparison of INTAKE24 (an Online 24-h dietary recall tool) with interviewer-led 24-h recall in 11–24 year-old. *Nutrients* 8. MDPI AG.
- 86. Wark PA, Hardie LJ, Frost GS, et al. (2018) Validity of an online 24-h recall tool (myfood24) for dietary assessment in population studies: comparison with biomarkers and standard interviews. *BMC Med.* 16, 136.
- Albar SA, Alwan NA, Evans CEL, et al. (2016) Agreement between an online dietary assessment tool (myfood24) and an interviewer-administered 24-h dietary recall in British adolescents aged 11–18 years. *Br. J. Nutr.* 115, 1678–1686.
- Arab L, Tseng CH, Ang A, et al. (2011) Validity of a multipass, web-based, 24-hour self-administered recall for assessment of total energy intake in blacks and whites. *Am. J. Epidemiol.* 174, 1256–1265.
- Intemann T, Pigeot I, De Henauw S, et al. (2019) Urinary sucrose and fructose to validate self-reported sugar intake in children and adolescents: results from the I.Family study. *Eur. J. Nutr.* 58, 1247–1258.
- 90. Gilsing A, Mayhew AJ, Payette H, et al. (2018) Validity and reliability of a short diet questionnaire to estimate dietary intake in older adults in a subsample of the Canadian longitudinal study on aging. *Nutrients* 10. MDPI AG.
- Carvalho MA, Baranowski T, Foster E, et al. (2015) Validation of the Portuguese selfadministered computerised 24-hour dietary recall among second-, third- and fourthgrade children. *J. Hum. Nutr. Diet.* 28, 666–674.
- Arab L, Tseng C-H, Ang A, et al. (2011) Validity of a Multipass, Web-based, 24-Hour Self-Administered Recall for Assessment of Total Energy Intake in Blacks and Whites. *Am. J. Epidemiol.* 174, 1256–1265.
- 93. Wardenaar FC, Steennis J, Ceelen IJM, et al. (2015) Validation of web-based, multiple 24-h recalls combined with nutritional supplement intake questionnaires against

nitrogen excretions to determine protein intake in Dutch elite athletes. *Br. J. Nutr.* **114**, 2083–2092. Cambridge University Press.

- 94. Lafrenière J, Couillard C, Lamarche B, et al. (2019) Associations between self-reported vegetable and fruit intake assessed with a new web-based 24-h dietary recall and serum carotenoids in free-living adults: a relative validation study. J. Nutr. Sci. 8, e26.
- 95. Lafrenière J, Lamarche B, Laramée C, et al. (2017) Validation of a newly automated web-based 24-hour dietary recall using fully controlled feeding studies. *BMC Nutr.* 3, 34. Springer Science and Business Media LLC.
- 96. Timon C, van den Barg R, Blain R, et al. (2016) A review of the design and validation of web- and computer-based 24-h dietary recall tools. *Nutr. Res. Rev.* 29, 268–280. Cambridge University Press.
- Lombard MJ, Steyn NP, Charlton KE, et al. (2015) Application and interpretation of multiple statistical tests to evaluate validity of dietary intake assessment methods. *Nutr. J.* 14, 40.
- 98. Rowland M, Poliakov I, Christie S, et al. (2016) *Field testing of the use of INTAKE24 in a sample of young people and adults living in Scotland*. Scotland: .
- Brooke J (1996) SUS: A "quick and dirty" usability scale". In Usability Eval. Ind.,
 Taylor & F, pp. 189–194 [Jordan PW, Thomas B, L MI, et al., editors]. London, UK: .
- 100. Albar SA, Carter MC, Alwan NA, et al. (2015) Formative evaluation of the usability and acceptability of myfood24 among adolescents: a UK online dietary assessments tool. *BMC Nutr.* 1. Springer Nature.
- Bangor J, Kortum P & Miller JT (2009) Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. J. usuability Stud. 4, 114–123.
- 102. Kupis J, Johnson S, Hallihan G, et al. (2019) Assessing the usability of the automated self-administered dietary assessment tool (Asa24) among low-income adults. *Nutrients* 11. MDPI AG.
- 103. Eysenbach G (2005) The Law of Attrition. J. Med. Internet Res. 7, e11.
- 104. Sieverink F, Kelders SM & van Gemert-Pijnen JE (2017) Clarifying the Concept of Adherence to eHealth Technology: Systematic Review on When Usage Becomes Adherence. J. Med. Internet Res. 19, e402. Journal of Medical Internet Research.
- 105. Ludden GD, van Rompay TJ, Kelders SM, et al. (2015) How to Increase Reach and

Adherence of Web-Based Interventions: A Design Research Viewpoint. J. Med. Internet Res. 17, e172. Journal of Medical Internet Research.

- 106. Ryan C, Bergin M & Wells JS (2018) Theoretical Perspectives of Adherence to Web-Based Interventions: a Scoping Review. Int. J. Behav. Med. 25, 17–29. Springer New York LLC.
- 107. Open Food Facts (2020) OpenFoodFact, the free food product database. https://world.openfoodfacts.org/ (accessed December 2020).
- Lamarine M, Hager J, Saris WHM, et al. (2018) Fast and Accurate Approaches for Large-Scale, Automated Mapping of Food Diaries on Food Composition Tables. *Front. Nutr.* 5.
- 109. Chin EL, Simmons G, Bouzid YY, et al. (2019) Nutrient Estimation from 24-Hour Food Recalls Using Machine Learning and Database Mapping: A Case Study with Lactose. *Nutrients* 11, 3045.
- 110. Carter M, Hancock N, Albar S, et al. (2016) Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool. *Nutrients* 8, 480. Multidisciplinary Digital Publishing Institute.
- 111. National Cancer Institute (2020) ASA24® Respondent Website Features. https://epi.grants.cancer.gov/asa24/respondent/features.html (accessed December 2020).
- 112. Ward HA, McLellan H, Udeh-Momoh C, et al. (2019) Use of online dietary recalls among older UK adults: A feasibility study of an online dietary assessment tool. *Nutrients* 11. MDPI AG.
- 113. Kupis J, Johnson S, Hallihan G, et al. (2019) Assessing the Usability of the Automated Self-Administered Dietary Assessment Tool (ASA24) among Low-Income Adults. *Nutrients* 11, 132.
- 114. Kirkpatrick SI, Guenther PM, Douglass D, et al. (2019) The Provision of Assistance Does Not Substantially Impact the Accuracy of 24-Hour Dietary Recalls Completed Using the Automated Self-Administered 24-H Dietary Assessment Tool among Women with Low Incomes. J. Nutr. 149, 114–122. Oxford University Press.
- 115. Krehbiel CF, DuPaul GJ & Hoffman JA (2017) A Validation Study of the Automated Self-Administered 24-Hour Dietary Recall for Children, 2014 Version, at School

Lunch. J. Acad. Nutr. Diet. 117, 715–724. Elsevier B.V.

- 116. Chouraqui J-P, Tavoularis G, Emery Y, et al. (2018) The French national survey on food consumption of children under 3 years of age – Nutri-Bébé 2013: design, methodology, population sampling and feeding practices. *Public Health Nutr.* 21, 502– 514.
- König J, Hasenegger V & Rust P (2019) EU Menu Austria: Food consumption data for Austrian adolescents, adults and pregnant women. *EFSA Support. Publ.* 16.
- 118. van Rossum C, Nelis K, Wilson C, et al. (2018) National dietary survey in 2012-2016 on the general population aged 1-79 years in the Netherlands. *EFSA Support. Publ.* **15**.
- 119. Gibson RS, Charrondiere UR & Bell W (2017) Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv. Nutr. An Int. Rev. J. 8, 980–991.
- Cade JE (2017) Measuring diet in the 21st century: use of new technologies. Proc. Nutr. Soc. 76, 276–282.
- 121. Brassard D, Laramée C, Robitaille J, et al. (2020) Differences in Population-Based Dietary Intake Estimates Obtained From an Interviewer-Administered and a Self-Administered Web-Based 24-h Recall. *Front. Nutr.* 7, 137.
- 122. Koch SAJ, Conrad J, Cade JE, et al. (2021) Validation of the web-based selfadministered 24-h dietary recall myfood24-Germany: comparison with a weighed dietary record and biomarkers. *Eur. J. Nutr.* Published online 11 May 2021. doi: 10.1007/s00394-021-02547-7.
- 123. Subar AF, Potischman N, Dodd KW, et al. (2020) Performance and Feasibility of Recalls Completed Using the Automated Self-Administered 24-Hour Dietary Assessment Tool in Relation to Other Self-Report Tools and Biomarkers in the Interactive Diet and Activity Tracking in AARP (IDATA) Study. J. Acad. Nutr. Diet. 120, 1805–1820.
- Osadchiy T, Poliakov I, Olivier P, et al. (2020) Progressive 24-Hour Recall: Usability Study of Short Retention Intervals in Web-Based Dietary Assessment Surveys. J. Med. Internet Res. 22, e13266.
- 125. Subar AF, Thompson FE, Potischman N, et al. (2007) Formative Research of a Quick List for an Automated Self-Administered 24-Hour Dietary Recall. J. Am. Diet. Assoc.

107, 1002–1007. Elsevier.

- 126. Subar AF, Crafts J, Zimmerman TP, et al. (2010) Assessment of the Accuracy of Portion Size Reports Using Computer-Based Food Photographs Aids in the Development of an Automated Self-Administered 24-Hour Recall. J. Am. Diet. Assoc. 110, 55–64.
- 127. Smith K, Sampson G, Probst Y, et al. (2010) Development of Australian portion size photographs to enhance self-administered online dietary assessments for adults. *Nutr. Diet.* 67, 275–280.
- 128. Foster E, Hawkins A, Delve J, et al. (2014) Reducing the cost of dietary assessment: Self-Completed Recall and Analysis of Nutrition for use with children (SCRAN24). J. Hum. Nutr. Diet. 27, 26–35.
- Carter M, Hancock N, Albar S, et al. (2016) Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool. *Nutrients* 8, 480.
- Evans K, Hennessy Á, Walton J, et al. (2017) Development and evaluation of a concise food list for use in a web-based 24-h dietary recall tool. *J. Nutr. Sci.* 6, e46. Cambridge University Press.
- Timon CM, Evans K, Walton J, et al. (2015) The development of an innovative web based dietary assessment tool for an Irish adult population: The Diet Ireland tool. *Proc. Nutr. Soc.* 74, E274.

Figures

Figure 1. Criteria used to describe the tools

* "Eating occasion" step is the collection of time, name and place of consumption of each food reported

[†] "Quick list" step is the identification of all foods that the respondent consumed during the previous day

‡ "Forgotten food list" step provides cues about the consumption of often forgotten foods

§ "Detail cycle" step is the collection of detailed information on each food such as the fat content, brand name, preservation method, and the consumed amount

|| "Review and validation" step is the final review of the 24hDR

Figure 2. Flow chart for the selection of the online 24hDR tools

- * The two reviews were the followings (38, 43)
- † The two reports were the followings (44, 25)

Table 1. General description of the online 24hDR tools*

Lette	Name [†]	Ref [‡]	Country of	Available	Owner	Adaptation	Latest	Target	Type of	Туре	Food	Other	Automatic r	eport for
r			developmen t	languages"		to other countries	version	ρορωατιοη	medium	of foods [∥]	composition data integrated in the tool	data collected	researcher	respondent
A	ASA24	(46,12	United	English;	National	Y (US,	1. ASA24-	\geq 10 years	C; M; T	G + B	Y	DS;	Y	Y
		5,126)	States	Spanish	Institutes	Australia,	2020 (US	of age				Addition		
				(US	of Health,	Canada)	version)					of sleep		
				version)	Bethesda,		2. ASA24-					questions		
				English	US.		2018					in a		
				(Australian	/National		(Canadian					future		
				version)	Cancer		version)					release		
				English;	Institute,		3. ASA24-							
				French	Rockville,		2016							
				(Canadian	US.		(Australian							
				verison)			version)							
В	CANAA-	(47)	Belgium	10	Departmen	Ν	NA	Validated	С	G + B	Y	PA;	NA	Y
	W			languages	t of Public			for				ANT		
				including :	Health			children (≥						
				English;	Ghent			3 years of						
				German;	University,			age) and						
				Spanish;	Ghent,			adolescents						
				French;	Belgium			(11 and 12						
				Italian;	and			years of						
				Swedish;	Research									

				Greek; with translator system	Foundation Flanders, Brussels, belgium			age)						
С	CAPIS	(49)	South Korea	Korean	Seoul National University, Seoul, South Korea	Ν	NA	≥ 18 years of age	С	G	Y	PA; ANT	Υ	Y
D	<u>Compl-</u> eat ™	NA	The Netherlands	Dutch	Wageninge n University and Research, Wageninge n, the Netherland s	Ν	New version available in 2021	≥ 6 months	C; T	G	Υ	DS	Υ	Ν
Ε	Diet Advice	(51,66	Australia	English	University of Wollongon g, Wollongon g, Australia	Ν	NA	≥ 18 years of age	С	G	Y	Ν	Υ	Ν

F	DietDay	(63)	United States	English	University of California, Los Angeles, US.	Ν	NA	≥ 18 years of age	С	G + B	Ŷ	DS; SD	Y	Y
G	FBQ	NA	Canada	English	University of Waterloo, Waterloo, Canada	Ν	NA	Validated for children between 11 and 13 years of age	С	G	Ν	FH	NA	Y
Н	FoRC	(54)	United Kingdom	English	University of Aberdeen, Aberdeen, UK	Ν	NA	Adults ≥ 18 years of age	С	G	Ν	FH; SD	NA	Ν
Ī	<u>Intake24</u>	(55,12	United Kingdom	English; Danish; Portuguese ; Arabic	UK Open Governme nt [¶]	Y (UK, Portugal, Denmark, New Zealand, the United Arab Emirates, South Asia region (Sri	2019	Originally developed for ≥ 11 years of age Adaptation for ≥ 1.5 years of age (not	C; M (adaptati on in progress); T	G + B	Υ	Ν	Υ	Y

						Lanka, India, Bangladesh, Pakistan) and Australia in progress)		published)						
Ţ	<u>myfood2</u> <u>4</u>	(36,56	England	English; German; Danish; Norwegian ; French; Arabic (in progress); Spanish (in progress)	Dietary Assessmen t Ltd, Leeds, England	Y (Germany, Denmark, Norway, France, Caribbean, in progress for Middle East countries and Peru)	2019	≥ 10 years of age	C; M (adaptati on in progress); T	G + B	Υ	DS	Υ	Υ
K	<u>NutriNet</u> <u>-Santé</u>	NA	France	French	Nutritional Epidemiol ogy Research Team (Inserm 1153/Inra 1125/Cna m/Universi té de Paris - Paris 13), Paris, France	Y; Belgium + Partnership with research teams and public institutes to transpose the technology to other countries (e.g. Brazil; Mexico; Canada)	01/09/2020	≥ 15 years of age	C; T; M	G + B	N (but direct match with an ad hoc food composition table)	PA; ANT; FH; SD collected from the NutriNet platform	Ν	Y

L	<u>PAC24</u>	(57)	Portugal	Portuguese	Instituto de Medicina Preventiva & Saúde Pública, Universida de de Lisboa, Lisbon, Portugal	Ν	2015	Validated for children between 7 and 10 years of age	C	G	Υ	Ν	Υ	Ν
M	Web- SPAN (based on FBQ tool)	(58)	Canada	English	University of Alberta, Alberta, Canada	Ν	2004	Validated for children between 11 and 15 years of age	С	G + B	Ν	PA; ANT; FH	Ν	Y
<u>N</u>	<u>ClinShar</u> <u>e</u>	NA	France	French	MyGoodLi fe, Paris, France	Ν	2020	NA	С; М; Т	G	Y	PA; ANT; FH; P	Y	N
0	Creme Diet (publishe d under the name Foodboo k24)	(59,13	Ireland	English	Creme Global, Dublin, Ireland	Ν	NA	≥ 18 years of age	C ; T; M	G + B	Υ	DS	Υ	Y

<u>P</u>	<u>R24W</u>	(65)	Canada	French; English	Laval University, Quebec City, Canada	Ν	2015	≥ 18 years of age	C; M; T	G	Υ	SD; FH	Υ	Ν
Q	<u>Riksmat</u> <u>enFlex</u>	(61)	Sweden	Swedish	Swedish Food Agency, Uppsala, Sweden	Ν	2019	12 ≤Teenagers ≥ 18 years of age; Adaptation in progress for all populations	C; M; T	G	Υ	The tool has an integrate d questionn aire function PA; FH; SD; Food safety questions	Υ	Ν
<u>R</u>	<u>SACAN</u> <u>A</u>	(62)	Belgium, Germany, Cyprus, Estonia, Hungary, Italy, Spain, Sweden, Poland	Dutch (Flemish); German; Estonian; Hungarian; Italian; Spanish; Swedish; Greek; English; Polish	IDEFICS/I. Family Consortia	Y (Belgium, Germany, Cyprus, Estonia, Hungary, Italy, Spain, Sweden, Poland)	2014	≥ 11 years of age	С; Т	G + B	Υ	Ν	Υ	Y

Ref, References; UK, United Kingdom; C, computer; M, Mobile; T, Tablet; G, Generic; B, Brand level; Y, Yes; N, No; DS, dietary supplement; PA, Physical activity; ANT, anthropometric data; SD, socio-demographic data; FH, Food habits; NA, Missing information. ASA24, Automated Self-Administered 24 hour diet recall; CANAA-W, Children's and Adolescents' Nutrition Assessment and Advice on the Web; CAPIS, Computer-Assisted Personal Interview System; FBQ, Web-based Food Behaviour Questionnaire; FoRC, Food Record Checklist; myfood24, Measure Your Food On One Day; PAC24, Portuguese self-administered computerized 24-hour dietary recall; R24W, Web-based 24H dietary recall; Web-SPAN, Web-Survey of Physical Activity and Nutrition; SACANA, Self-Administered Children, Adolescents, and Adult Nutrition Assessment;

^{*} All information was validated by the tools' owners or developers, except for the tools Creme Diet, CAPIS, CANAA-W, Diet Advice, DietDay, FoRC, and FBQ † The name is underlined when information was validated by the developer/owner of the tool ‡publications of tool development; § In the most recent version of the tool; || In the version published; ¶ Initially developed by Newcastle University, Newcastle, United Kingdom with funding from Food Standards Scotland, Adaptation by the University of Cambridge, Cambridge, United Kingdom.

Table 2. Step number and method of the multiple-pass methodology and main functionalities to collect dietary intakes

Lette r	Name [*]	"Eating Occasion"	"Quick List"	Prompts for the quick list	"Detail cycle", precise identifica tion of the food	"Detail cycle", additional food descriptor	"Detail cycle", Portion size estimation	"Forgotte n Foods List"	"Review and validation"	Creation of recipe	Other functionality to identify the food	FFQ
A	<u>ASA24</u>	Time of consumption; Place of consumption; Social context; Presence or not of a TV screen; Question on eating habits; Place of purchases	Keywords search engine; Hierarchical tree by food group	3	Ν	Prepared dish;; Place of purchase; Several descriptors (fat content, fortification, etc.) according to the selected food	Food picture; standard unit	Y	Y	Y	Saving favorite foods; Suggestions for commonly consumed foods	N
В	CANAA-W	Time	Food group consumption reporting among 25 food groups	Ν	Hierarchi cal tree by food group	Ν	Food picture: 4 types of portion presentations with 260 generic foods photographed (Source: Belgian manual on food portions and household measures); Household measurement units	Υ	Υ	Ν	Ν	Ν

C	CAPIS	Time; Place of consumption	Keywords search engine; Hierarchical tree by food group	3	Ν	Ν	Food picture; Standard unit; Free entry of g weight	Ν	Υ	Ν	Suggestions for commonly consumed foods	Y
D	<u>Compl-eat</u> M	Time of consumption; Preparation method	Checking the box for the group consumed	Ν	Keyword search engine; Hierarchi cal tree by food group	Ν	Standard unit; Household measure; Work for adding food pictures; Free entry of g weight	Y	Y	Y	Inclusion of a (free) note to detail the food; Manual entry for missing foods in the integrated food list	Ν
Е	Diet Advice	Ν	Food group reporting	3	Hierarchi cal tree by food group	Ν	Food picture	NA	NA	NA	Ν	N
F	DietDay	Time of consumption	Keywords search engine; Hierarchical tree by food group	3	Ν	Prepared dish; Place of purchase, Flavored; Method of food preparation	Food picture; Household measures	Y	Y	Ν	Ν	Ν

G	Web-based food behaviour questionnair e	Time of consumption	Ν	Ν	Dropdow n list	Ν	Food picture; Standard units	Y	Υ	Ν	Suggestions for commonly consumed foods	Y
Н	FoRC	Time of consumption	Food group consumption reporting among 16 food groups	Ν	Hierarchi cal tree by food group	Ν	Food picture	Y	NA	Ν	Ν	Ν
Ī	<u>Intake24</u>	Time of consumption	Free keywords	Ν	Keyword search engine; Hierarchi cal tree by food group	Source of food (purchased or home-based)	Food picture; Cursor (for drinks only); standard units; household measure; food waste (for certain foods only)	Υ	Υ	Y (if missing foods)	Manual entry for missing foods in the integrated food list	Ν
<u>1</u>	<u>myfood24</u>	Time of consumption	Ν	Ν	Keyword search engine; Filter by food category; Filter by brand	Ν	Food picture; Standard unit; Free entry of g weight	Υ	Υ	Υ	Recently added foods; Saving recipes created; Suggestions for commonly consumed foods	Ν
K	<u>NutriNet-</u> <u>Santé</u>	Time of consumption; Place of consumption; Social context; Presence or not of a TV screen; Place of meal preparation	Ν	Ν	Keyword search engine; Hierarchi cal tree by food group	Type of food (commercial, restaurant or home-made); brand; salt consumed by food Identification of organic food	Food picture; Standard unit; Free entry of g weight	Y	Υ	Ν	Suggested sample meals (related to previous user's recalls); Manual entry for missing foods in the integrated food list	Ν

consumed

L	<u>PAC24</u>	Time of consumption; Place of consumption; Social context; Presence or not of a TV screen; Meal preparation	Keywords search engine	3	Ν	Type of preparation	Food picture; Standard unit; Household measure; Free entry of g weight for food with no pictures	Ν	Υ	Ν	Ν	Ν
M	<u>Web-SPAN</u> (based on FBQ tool)	Time of consumption; Place of consumption; Social Consumption; Question on eating habits. Meal preparation	Ν	Ν	Dropdow n list	Ν	Food picture; Standard units	Υ	Υ	Ν	Suggestions for commonly consumed foods	Y
<u>N</u>	<u>ClinShare</u>	Time of consumption; Place of consumption; Social context; Presence or not of a screen	Ν	Ν	Keyword search engine; Hierarchi cal tree by food group	Ν	Standard unit; Free entry of g weight	Υ	Υ	Y	Ν	Ν
0	Creme Diet (published under the name Foodbook24)	Time; Place of consumption	Keywords search engine; Hierarchical tree by food group	3	Ν	Homemade food, low-fat or not	Food picture; Standard unit	Y	Υ	Ν	Ν	Y

<u>P</u>	<u>R24W</u>	Time of consumption; Place of consumption; Social context; Presence or not of a screen	Ν	Ν	Keyword search engine; Hierarchi cal tree by food group	Fat content, cooked or raw, canned or fresh, etc.	Food picture; Standard unit; Household measure	Y	Y	For sandwich es and salads only	Ν	Y
Q	<u>RiksmatenFl</u> <u>ex</u>	Time of consumption; Place of consumption; Social context	Ν	Ν	Keyword search engine	Y type of certain foods (e.g. meat, bread, etc.)	Food picture; Standard unit; Household measure	Υ	Υ	Ν	Pictures of foods commonly consumed in five food categories (bread, ready-to- eat sandwiches, breakfast cereals, ice cream, and fat spreads); Manual entry for missing foods in the integrated food list	Y
<u>R</u>	<u>SACANA</u>	Time of consumption; Place of consumption; Social context; Activity during the meal	Food groups displayed in images or search using keywords in a pre-code food list	Ν	Keyword search engine; Hierarchi cal tree by food group	Can be entered by the participant and then integrated manually by the survey center to the main menu for general/futur e use	Food picture; standard unit; household measure	Υ	Υ	Υ	Manual entry for missing foods in the integrated food list	Ν

FFQ, Food Frequency Questionnaire; N, No; Y, Yes; ASA24, Automated Self-Administered 24 hour diet recall; CANAA-W, Children's and Adolescents' Nutrition Assessment and Advice on the Web; CAPIS, Computer-Assisted Personal Interview System; FBQ, Web-based Food Behaviour Questionnaire; FoRC, Food Record Checklist; myfood24, Measure Your Food On One Day; PAC24, Portuguese self-administered computerized 24-hour dietary recall; R24W, Web-based 24H dietary recall; Web-SPAN, Web-Survey of Physical Activity and Nutrition; SACANA, Self-Administered Children, Adolescents, and Adult Nutrition Assessment. * The name is underlined when information was validated by the developer/owner of the tool

Table 3. Methodological characteristics of the validation studies for the online 24hDR tools

Let ter	Name	Studie s for the	Data collec tion	Populat ion [*]	Nb of recalls with	Subjective reference method	Objective reference method	Main criteria for	Type of s	statistic	al analyses	\$			Other c	riteria
		valida tion of food and nutrie nt intake estima tes			the online tool			compari son	Mean compari son [†]	Blan d & Altm an [‡]	Coeffici ents of correla tion [§]	Intra- class coeffici ent correlat ions	Cross- classific ation ^{II}	Other method	Propor tion of matche s, intrusi ons, omissi ons	Percenta ge of under- and overrepo rting
A	ASA24¶	(76)	NA	n = 93; ≥ 18 years old; US	At least two 24hDR	4 days weighted food diary (2 weeks before recalls with the tool)	N	Energy, nutrient estimates and HEI- index between the tool and subjectiv e measure ments			X		X			
A	ASA24¶	(82)	NA	n = 81; 20–70 years old; US	One 24hDR (for half of the particip ants) filled out in	One interview- led 24hDR (for half of the participant s)	1-day menu (3 meals) consumed in the lab the day before the recall with the	Energy and nutrient estimates between the tool, subjectiv e method and						Regres sion analys es to test the bias in nutrien t intake	X (differ ence betwee n the tools using linear regress	

Accepted manuscript

					the lab		tool. Plates were weighed before and after consumpti on	objective measure ments			estimat ion betwee n the tools	ion)
Α	ASA24¶	(83)	NA	n = 81; 20–70 years old; US	One 24hDR (for half of the particip ants) filled out in the lab	One interview- led 24hDR (for half of the participant s)	1-day menu (3 meals) consumed in the lab the day before the recall with the tool. Plates were weighed before and after consumpti on	Portion sizes between the tool, subjectiv e method and objective measure ments		Χ	Regres sion analys es to test the bias in portion size estimat es betwee n the tools	
Α	ASA24¶	(84)	2011– 2012	n = 1 052; 20–70 years old; US	One or two 24hDR (depend ing on the random ized group)	One or two interview- led 24hDR by phone	NA	Energy and nutrient estimates between the tool and subjectiv e measure	X (equival ence testing, using two one- sided test method		Differe nce in attritio n rates by type of tool	

ments with a bound equal to 20%)

A ASA

Α

ASA24 [¶]	(77)	NA	n = 627; ≥ 18 years old; US; women	At least one 24hDR	7 days weighed food diary (1–5 weeks after recalls with the tool) paper or online Semiquant itative food frequency questionna ire (Harvard or Willett FFQ)	DLW over 1 year, 4 urine samples (nitrogen, sodium, potassium measurem ents), 2 blood samples (fatty acids, carotenoid s, folate, tocophero l, retinol measurem ents)	Energy and nutrient estimates related to biomarke rs between the tool, subjectiv e method and objective measure ments	
ASA24 [¶]	(75)	NA	n = 1 075; 50–74 years old; US	Six 24hDR over 1 year	Two 4-day food diaries 6 months apart 2 web- based Diet History Questionn	DLW over a 2- week period and two urine samples (protein, potassium	Nutrient intakes related to biomarke rs between the tool, subjectiv e	X (no statistic al tests)

aires, a

food

and

sodium) 6 and

methods

Х

Х

X (no tests)

Downloaded from https://www.cambridge.org/core. 19 Aug 2021 at 14:17:20, subject to the Cambridge Core terms of use.

						frequency questionna ire	months apart	objective measure ments					
В	CANAA- W	validati	on study o	on the offlin	ne 24hDR	software YAN	$IA-C^{(48)}$, on w	vhich CANA	A-W is ba	sed			
С	CAPIS												
D	Compl- eat TM	(93)	2013	n = 47; 18–35 years old; the Netherl ands; elite athletes	Three 24hDR over 2– 4 weeks	Ν	Total urinary nitrogen	Protein estimates between the tool and objective measure ments	Х	Х	Х		
D	Compl- eat TM	(50)	2011– 2015	n=514; 20–70 years old; the Netherl ands	Three 24hDR over a year (averag e number of days betwee n the first and last recall = 354)	3 interview- led 24hDR over a year	Ν	Energy, nutrient estimates and food group intakes between the tool and subjectiv e measure ments	Χ	Х		X (Lin's coeffici ents)	
Е	Diet Advice	(78)	NA	n = 30; 23–60 years	One dietary	One diet History One Food	NA	Energy, macronut rient		Х	Х		X

				old; Australi a	recall	record		estimates between the tool and subjectiv e measure ments						
Ε	Diet Advice	(79)	NA	n = 30; 23–60 years old; Australi a	One dietary recall	One diet History One Food record	NA	Energy, macronut rient estimates between the tool and subjectiv e measure ments		Х	Х			Х
F	DietDay	(88)	2006– 2009	n = 53; 21–69 years old; US	Six 24hDR over a 2-week period	Dietary History Questionn aire (FFQ of 124 items)	DLW over 2 weeks	Energy estimates between the tools and objective measure ment			Х	Х		Х
G	FBQ	(53)	2006	n = 201; 11–14 years old; Canada	One 24hDR	1 interview- led recall (same day as the tool)	Ν	Energy and nutrient estimates between the tool and	Х		Х	Х	Х	

								subjectiv e measure ments						
Η	FoRC	(54)	NA	n = 53; 17–49 years old; UK	Four 24hDR	4 food diaries (after 24-H recalls using the tool)	Ν	Energy, fats and some food group intakes between the tool and subjectiv e measure ments	Х	X	X			
Ι	Intake24	(85)	12/20 13– 03/20 14	n = 168; 11–24 years old; Scotlan d	Four 24hDR over one month	4 Interview- led 24hDR (same day as the tool)	Ν	Nutrients and food group estimates between the tool and subjectiv e measure ments		Х				Х
Ι	Intake24	(68)	11/20 15– 09/20 16	N = 98; 40–65 years old; England	At least two 24hDR over 10 days	Ν	Total energy expenditu re by DLW over 10	Total energy estimates with objective energy		Х	Х	Х		

Х

Х

days expendit

ure

I Intake24 Evaluation as part of the NDNS using DLW in progress (2019–2023)

(86) Х J myfood24 NA n=212; At least 3 Total Energy Х Х 18-65 three interviewurinary and years 24hDR led 24hDR nitrogen, nutrient old; over 4 (2-4 days)urinary estimates England after the related to weeks potassium recall with biomarke , sodium, the tool) fructose rs and between sucrose the tool concentrat and objective ions, plasma measure concentrat ments ion of total vitamin C, vitamin E and β carotene Total energy expenditu re (87) myfood24 NA n=212; At least Two Ν Energy Х Х J 11-18 interviewtwo and years 24hDR led 24hDR nutrient old; over 2 (same day estimates England weeks as the tool) between at school the tool and subjectiv

Х

								e measure ments				
K	NutriNet- Santé	(31)	2009	n= 147; 48–75 years old; France	One 24hDR	One interview- led 24hDR (the same day as the tool)	Ν	Energy, nutrient estimates and food group intakes between the tool and subjectiv e measure ments			Χ	Χ
L	PAC24	(91)	2013	n = 41; 7–10 years old; Portugal	One 24hDR at school (availab le assistan ce)	Ν	Recording type of foods and amount consumed at lunch by trained observers at school	Portion size estimates between tool and objective measure ments	Χ	Х		
Μ	Web- SPAN (based on FBQ tool)	(64)	2005	n = 459; 11–15 years old; Canada	Two 24hDR, over two weeks	3 days weighted food dairy (after recalls with the tool)	Ν	Energy and nutrient estimates between the tool and subjectiv	Х		Х	Χ

measure

ments

N	ClinShar e													
0	Crème Diet (publishe d under the name Foodbook 24)''	(59)	NA	n = 40; 18–64 years old; Ireland	Three 24hDR	4 days semi- weighed food diary (10 days after the recall with the tool)	plasma concentrat ion of carotenoid s, ascorbic acid, fatty acids and total urinary nitrogen, urinary potassium , sodium concentrat ions	Energy, nutrient estimates and food group intakes between the tool and subjectiv e measure ments Nutrient estimates and food group intakes related to biomarke rs between the tool, subjectiv e method and objective measure	X	X	Χ	X		

Р	R24W	(94)	NA	n = 107; 18–65 years old; Canada	Four 24hDR over 20 days	Ν	Serum carotenoid s	Food and nutrient estimates related to biomarke rs between the tool and objective measure ments			X	X	
Р	R24W	(80)	NA	n = 107; 18–65 years old; Canada	Four 24hDR over 20 days	3 days weighed food diary (before recalls with the tool)	Ν	C-HEI score and compone nts between the tool and subjectiv e measure ments	Χ		Х	Х	
Р	R24W	(81)	NA	n = 107; 18–65 years old; Canada	Four 24hDR over 20 days	3 days weighed food diary (before recalls with the tool)	Ν	Energy and nutrient estimates between the tool and subjectiv e measure ments	Χ	Х	Х	Х	Х

								Energy estimates between the tool and estimate d energy expendit ure (Mifflin equation s)						
Ρ	R24W	(95)	NA	n = 62; 18–5 years old; Canada	Two 24hDR recalls	Ν	7-day cyclic menu for 4 to 7 weeks, consumed outside, except lunch consumed in the lab	Portion sizes between the tool and objective measure ments Energy and macronut rient estimates between the tool and objective measure	Χ		X		X	Χ
Q	Riksmate nFlex	(30)	NA	n = 78; 11-18 years old;	Two 24hDR , 1 at school	2 interview- led 24hDR 2–4 weeks	Plasma alkylresor cinols and carotenoid	Energy, food and nutrient estimates	Х	Х	Х	Х	Х	

			Sweden	and 1 at home 1–2 weeks later	after the recall with the tool, 1 at school and 1 at home (by phone) 1– 2 weeks later	s biomarker s Energy expenditu re using accelerom eter ActiGraph GT3X over 7 days	related to biomarke rs between the tool and subjectiv e measure ments Food and nutrient estimates related to biomarke rs between the tool, subjectiv e method and objective measure ments Total energy estimates and energy expendit ure		
SACANA	(89)	2013– 2014	n = 228; 5–18 years old; Belgiu m,	At least three 24hDR	One FFQ of 59 items over the previous month	Total urinary fructose and sucrose concentrat	Sugar estimates between the tool, objective measure	Х	Metho d of triads using linear regress

R

ion

Cyprus,	ions	ments
Estonia,		and
German		relative
у,		frequenc
Hungar		y of
y, Italy,		sweet
Spain,		foods
Sweden		
, Poland		

N, No; NA, Missing values; ASA24, Automated Self-Administered 24 hour diet recall; CANAA-W, Children's and Adolescents' Nutrition Assessment and Advice on the Web; CAPIS, Computer-Assisted Personal Interview System; FBQ, Web-based Food Behaviour Questionnaire; FoRC, Food Record Checklist; myfood24, Measure Your Food On One Day; PAC24, Portuguese self-administered computerized 24-hour dietary recall; R24W, Web-based 24H dietary recall; Web-SPAN, Web-Survey of Physical Activity and Nutrition; SACANA, Self-Administered Children, Adolescents, and Adult Nutrition Assessment.

Grey cells are tools without publications on the tool

* Final sample size; Age; Country; Specificity if needed † t-test or paired t-tests or Wilcoxon signed rank test ‡ graphical method and limit of agreements § Spearman or Pearson, de-attenuated or raw correlation || Cross-classification and weighted kappa coefficient ¶ ASA24 was also validated among specific subpopulations such as low-income individuals, children 10–13 years of age, overweight and obese women, multi-ethnic older adults. All publications are available here: <u>https://epi.grants.cancer.gov/asa24/resources/publications.html</u>

Table 4. Methodological characteristics of the user usability studies for the online 24hDR tools

Lette r	Tool name	Studies on user usability	Data collectio	Population*	Number of dietary recalls with the	Method	Main result		
		and acceptability	n date		online tool		User satisfaction	Issues	Other
A	ASA24 [†]	(35)	NA	Study 1: $n =$ 40; 2–5 years old (parental reporting); Canada Study 2: $n =$ 294; 10–13 years old; Canada Study 3: $n =$ 98; 10–13 years old; Canada Study 4: $n =$ 331; 36–82 years old; Canada Study 5: $n =$ 264; 46–88 years old; Canada	Study 1: one 24hDR after an observational feeding day (ASA24- Canada-2014) Study 2: one 24hDR at school with observation (ASA24- 2016 US) and one at home Study 3: one 24hDR at school after an observational feeding day (ASA24-2016 US and ASA24-2016 US and ASA24-2014- Kids) Study 4: four 24hDR over 4 months (ASA24-Canada-2014 and ASA24-2016 US), assistance available by phone or email Study 5: four 24hDR over 3 months (ASA24-Canada- 2014), assistance available by phone or email	Attrition and success and main technical issues in each study Study 1: NA Study 2: Usability questionnaire & researcher comments at school Study 3: one 24hDR at school after an observational feeding day (ASA24-2016 US and ASA24-2014- Kids) & researcher comments at school Study 4: NA Study 5: assistance comments	Study 2: majority indicated they found completing ASA24 "very easy", "easy", or "neutral"	Navigation; Finding the correct food, in particular for multiple-word searches; Language not child-friendly; Log-in issues; Assistance available only during office hours	Study 1: Median 35 min; Study 2-3: 34 min; Study 4: 34 min
Α	ASA24 [†]	(84)	NA	n = 942; 20– 70 years old; US; Focus	One 24hDR One interview-led 24- H recall using AMPM	Questionnaire on the preference between ASA24 and interview-	70% preferred ASA24 over AMPM, with a significant	NA	NA

				on subgroup that completed both ASA24 and interview-led recalls		led recall using AMPM	decrease with age		
Α	ASA24 [†]	(113)	NA	$n = 39; \ge 18$ years old; US; low- income	One 24hDR	Comparison of attrition rates between unmoderator (no help), semi-moderator (audio and video recording) and moderator group (audio and video recording, think-aloud, help requests available) Analysis of audio and video recording among moderator and semi- moderator groups by categorizing each task and issue Quantitative (number of task successes, number of issues, time, food item count) and qualitative analyses of each task and usability issue	NA	34.6% of issues out of 286 related to effectiveness (ability to perform a task, e.g. submit incorrect information, next step unclear), 45.8% related to efficiency (effort to complete a task, e.g. search item missing or inaccurate, mis- click), 4.2% related to satisfaction (desired option not available), 15.4% related to comprehension (e.g. question not understood)	Average time 27.4 min
В	CANAA-W	(47)	2011	n = 65; 10– 12 years old; Belgium	Children: At least two 24hDR (one under the supervision of	Eight focus groups for children and parents Feasibility	More than 50% agreed that the tool was clear, easy to	NA	Reasons for drop out: lack of

				Parents from primary school	researchers at school and one at home) Parents: Three 24hDR of their children	questionnaire for parents on user- friendliness, enjoyment, attractiveness, clarity of feedback.	complete, comprehensible, understandable		time, lack of knowledge about child's food, slow application
С	CAPIS	(49)	NA	n = 200; ≥ 20 years old; Korea	One 24hDR One paper 24hDR	Difference of time to collect data between methods using t-test Usability questionnaire (5 items)	Online tool was easier and faster than the paper 24hDR	NA	Mean completion time: 14 min (28 min for the paper 24hDR)
D	Compl-eat TM								
Ε	Diet Advice								
F	DietDay	(63)	NA	n = 261; 21– 69 years old; US	Eight 24hDR	Usability questionnaire (11 items)	75% found the DietDay easier than the CASI-DH		
G	FBQ	(53)	NA	n = 11 dietician experts; Canada n = 21; 11-12 years old; Canada	NA	Think-aloud method	Positive feedback about the content and appearance of the survey and the process of data collection	Finding the correct food	NA
Н	FoRC								
Ι	Intake24	(55)	NA	n = 80; 11– 24 years old; UK	3 rounds of 24hDR using the tool followed by one interview-led recall	Think-aloud method Eye-tracking Usability questionnaire (10-item) using an adapted SUS-scale	Average SUS-score 83/100 for the latest tool version	Finding the correct food; Navigation	NA
Ι	Intake24	(98)	2015	n = 182; >=	Four 24hDR over 10	Usability questionnaire	80% agreed that the	Finding the	Reasons

				11 years old; Scotland	days	(general questions, usability of specific functionalities, satisfaction) Free comments	system was easy to follow and understand	correct food, in particular for multiple-word searches ("mince, potatoes", "ham sandwich"); Log-in to the system	for refusal or drop out: no interest in the study, do not have time
Ι	Intake24	Evaluation as	s part of the N	DNS using DLW	in progress (2019–2023)				
J	myfood24	(100)	NA	Study 1 (beta version): n = 14; 11–18 years old; UK Study 2 (Improved live version): n = 70; 11– 18 years old; UK	Study 1: 24hDR moderated by researcher for 50% of participants and at home for the others Study 2: myfood24 24hDR at school and one led-interview 24hDR	Study 1: screen capture, verbal recording when doing standardized tasks usability-acceptability questionnaires (3 open-questions on myfood24, 5-likert scale questions on acceptability and satisfaction: SUS scale + 8 items) Study 2: same questionnaire as in study 1 and preference between methods	Study 1: average SUS score 66/100 Study 2: Average SUS score 74/100, 41% preferred the myfood24 to the interview-led recall	Stage I: finding the correct food, using the recipe functionality, navigation	mean completion time: Stage I: 31.8 min Stage II: 16.2
J	myfood24	(36)	NA	Study 1: $n =$ 92; ≥ 18 years old; Germany Study 2: $n =$ 15; ≥ 18 years old; Germany	Study 1: Four 24hDR (first recall with a researcher) Study 2: Enter in the online tool, 3 sample meals presented in a lab to assess the search functionality	Study 1: Usability- acceptability questionnaire (68 items): SUS scale, overall friendliness, willingness to use the tool, technical details and opinion on user- interface or specific functionalities	Median SUS-score 78/100, lower in women than men User-friendliness as good or very good (67%)	Finding the correct food, using the recipe functionality	Median completion time: 15 min, increase with age

						Free comments and overall suggestions Completion time Study 2: Analysis of screen video: number of search terms, way to search a product, number of exclusions, number of intrusions, impact of search behavior on energy and nutrient intakes compared to the nutrient reference values of the real products			
К	NutriNet- Santé	(31)	NA	n= 147; 48– 75 years old; France	One 24hDR and one food diary	Questionnaire on attitudes toward the web, time to complete the recall, opinion and method preference	The online method was preferred by 66.1% of the subjects compared to food diary	NA	Mean completion time: 31 min
L	PAC24								
Μ	Web-SPAN (based on FBQ tool)								
Ν	ClinShare								
0	Creme Diet (published under the name Foodbook24)	(59)	NA	n = 118; 18– 64 years old; Ireland	Three 24hDR 4-day food diary	16-item questionnaire on user acceptability (acceptability of some functionalities, method preference, future use, overall satisfaction)	69.5% reporting easy or "OK" to use, 67.8% preferred the online method compared to food diary	NA	NA
Р	R24W	(60)	NA	$n = 29; \ge 16$ years old;	One 24hDR	Satisfaction questionnaire	A large majority of respondents (90%)	NA	NA

Canada

Free comments

agreed that R24W was easy to access, to understand and to complete

Q RiksmatenFl This was carried out as part of development of the tool ex

R SACANA

US, United-States; UK, United-Kingdom; SUS scale, System Usability Scale; ASA24, Automated Self-Administered 24 hour diet recall; CANAA-W, Children's and Adolescents' Nutrition Assessment and Advice on the Web; CAPIS, Computer-Assisted Personal Interview System; FBQ, Web-based Food Behaviour Questionnaire; FoRC, Food Record Checklist; myfood24, Measure Your Food On One Day; PAC24, Portuguese self-administered computerized 24-hour dietary recall; R24W, Web-based 24H dietary recall; Web-SPAN, Web-Survey of Physical Activity and Nutrition; SACANA, Self-Administered Children, Adolescents, and Adult Nutrition Assessment.

Grey cells are tools without publications on the user usability; * Final sample size; Age; Country; Specificity if needed; † ASA24 usability was also assessed among children and multi-ethnic older adults