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H I G H L I G H T S

� Extensive literature search of kinetic parameters for CYP2C9/CYP2C19 substrates.
� Bayesian meta-regression to quantify inter-individual variability in pharmacokinetics.
� Compound-specific and pathway-related uncertainty factors were derived.
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A B S T R A C T

Quantifying variability in pharmacokinetics (PK) and toxicokinetics (TK) provides a science-based
approach to refine uncertainty factors (UFs) for chemical risk assessment. In this context, genetic
polymorphisms in cytochromes P450 (CYPs) drive inter-phenotypic differences and may result in
reduction or increase in metabolism of drugs or other xenobiotics. Here, an extensive literature search
was performed to identify PK data for probe substrates of the human polymorphic isoforms CYP2C9 and
CYP2C19. Relevant data from 158 publications were extracted for markers of chronic exposure (clearance
and area under the plasma concentration-time curve) and analysed using a Bayesian meta-regression
model. Enzyme function (EF), driven by inter-phenotypic differences across a range of allozymes present
in extensive and poor metabolisers (EMs and PMs), and fraction metabolised (Fm), were identified as
exhibiting the highest impact on the metabolism. The Bayesian meta-regression model provided good
predictions for such inter-phenotypic differences. Integration of population distributions for inter-
phenotypic differences and estimates for EF and Fm allowed the derivation of CYP2C9- and CYP2C19-
related UFs which ranged from 2.7 to 12.7, and were above the default factor for human variability in TK
(3.16) for PMs and major substrates (Fm >60%). These results provide population distributions and
pathway-related UFs as conservative in silico options to integrate variability in CYP2C9 and CYP2C19
metabolism using in vitro kinetic evidence and in the absence of human data. The future development of
quantitative extrapolation models is discussed with particular attention to integrating human in vitro and
in vivo PK or TK data with pathway-related variability for chemical risk assessment.

© 2020 Published by Elsevier B.V.
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1 These authors contributed equally to this work, correspondence.

http://dx.doi.org/10.1016/j.toxlet.2020.11.016
0378-4274/© 2020 Published by Elsevier B.V.
1. Introduction

The cytochrome P450 2C (CYP2C) family includes four enzymes,
namely CYP2C8, CYP2C9, CYP2C18, and CYP2C19. Of these
enzymes, CYP2C9 is the most abundantly expressed in the liver,
accounting for approximately 20% of total hepatic P450 protein and
is also expressed in the gut (Zhang et al. 2016). After CYP3A4 and
CYP2D6, CYP2C9 is one of the most important CYP isoform
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catalysing the biotransformation, mostly as oxidation reactions, for
approximately 15% of all known therapeutic drugs including hypo-
glycemic agents, anticonvulsants, anticoagulants, nonsteroidal
anti-inflammatory drugs (NSAIDs), antihypertensive, and diuretic
drugs (Daly et al. 2017; Isvoran et al. 2017; Marcath et al. 2019). A
number of these drugs have a narrow therapeutic index and the
impact on efficacy and safety is partly explained through the
quantification of inter-individual differences in CYP2C9 protein
expression and activity (Daly et al. 2017). Over 60 different gene
polymorphisms of CYP2C9 have been reported. The CYP2C9*1 allele
is considered the wild-type (WT) and carriers of CYP2C9*1 are
considered to be extensive metabolisers (EMs), while allelic
variants produce allozymes with reduced or deficient enzyme
function (EF) in poor metabolisers (PMs). The most studied
variants in Caucasians are CYP2C9*2 and CYP2C9*3, while in Asians
these two variants are infrequent (Daly 2015; Dorji et al. 2019).
Other variants such as CYP2C9*5, *6, *8, and *11 are more common
amongst African descendants (Alessandrini et al. 2013; Kudzi et al.
2009). CYP2C19 accounts for only 1% of the total CYP enzymes in
the liver, but is involved in the metabolism of around 10% of
therapeutic drugs used in clinical practice (Hiratsuka 2016), such
as proton pump inhibitors and antiepileptics. Over thirty allele
variants have been described for CYP2C19 and the CYP2C19*1 allele
is considered the WT, while the alleles *2, *3, *4, *5, *6, *7, and *8 are
associated with reduced EF and *17 is associated with an increased
EF (Alessandrini et al. 2013; Brown and Pereira 2018). Polymor-
phisms related to changes in EF are less frequent in Caucasians
(�2-5%) compared to that in Asian populations (18-23%) (Bertils-
son 1995; Gardiner and Begg 2006; Goldstein 2001; Isomura et al.
2010; Nakamura et al. 1985).

Impact of CYP2C9 and CYP2C19 polymorphisms on the
pharmacokinetics (PK) of a large number of therapeutic drugs is
well described in the literature (Daly et al. 2017; Hirota et al. 2013;
Stingl et al. 2013). These changes in PK profile of drugs can affect
their efficacy and safety, including hepatoxicity and gastrointesti-
nal bleeding after exposure to NSAIDs (Krasniqi et al. 2016), and
neurotoxicity associated with changes in phenytoin concentrations
(Dorado et al. 2013). Attention is also given to drugs with a narrow
therapeutic index, such as the anti-coagulant warfarin, since
carriers of the CYP2C9*2 and *3 variants have been associated with
a higher risk of bleeding (Higashi et al. 2002; Kawai et al. 2014). For
CYP2C19, the *2 variant has been associated with ischaemic events
including myocardial infarction and stent thrombosis (Kubica et al.
2011; Sibbing et al. 2009).

In the context of chemical risk assessment, human variability in
toxicokinetics (TK), including inter-phenotypic differences in
polymorphic CYPs, can be accounted for by the refinement of
the default TK uncertainty factor (UF) (TK UF: 3.16) (Clerbaux et al.
2018; Clerbaux et al. 2019). Indeed, depending on the consequence
of metabolism (detoxification or bioactivation), PMs may consti-
tute a sensitive subgroup and may not be covered by such default
TK UF. In such situations, assessment of safe levels of human
exposure for xenobiotics using pathway-related UFs or chemical-
specific adjustment factors (CSAFs) can provide an evidence-based
option. In the past, pathway-related UFs have been derived for
multiple metabolic pathways, renal excretion and variability in a
range of pharmacodynamics processes (Dorne et al., 2001a, 2001b;
Dorne et al. 2003a; Dorne et al. 2002; Dorne et al. 2003c; Dorne
et al. 2004c; Renwick and Lazarus 1998). In this context, CYP2C9
and CYP2C19 pathway-related UFs have been derived using human
PK data for CYP2C9 and CYP2C19 substrates (Dorne et al. 2003c;
Dorne et al. 2004c). However, in the previous studies, data on the
impact of inter-phenotypic differences on the kinetics of CYP2C9
and CYP2C19 probe substrates were limited and significant new
data have been published over the last decade. Many of the
previously published meta-analyses used fixed-effects approach
which may not be suitable for analysing data in situations wher
heterogeneity is high. Recently, meta-analysis methods to quantif
variability and uncertainty of kinetic parameters in variou
enzymes have been developed using Bayesian approaches (Darne
et al. 2020; Darney et al. 2019; Quignot et al. 2019; Wiecek et a
2019). In particular, Wiecek et al. (2019) provided a hierarchica
Bayesian meta-analysis method which is applicable to suc
datasets and to the chemical risk assessment field. Such model
make use of available PK data in a more robust manner – compare
to that using a standard weighted average of reported data 

through modelling reported means and population variability in a
integrated manner, that is, under a single model. This can be o
particular relevance in situations under which inter-individua
variability may differ between population groups (here, inter
phenotypic differences in metabolism). This has been show
previously when comparing healthy adults and subgroups of th
population (children, neonates, elderly) by Dorne et al. (2004b), a
well as for CYP3A4 substrates after single exposure and co
exposure to grapefruit juice or St John’s wort (Quignot et al. 2019
This type of meta-analysis model is referred to a meta-regressio
model, which uses linear regression to account for the impact of 

“group” covariate (e.g., “polymorphism” or “age group”), and i
specific to each study arm. In addition to study arm means
dispersions are also modelled.

Here, extensive literature searches have been conducted and 

database of published PK studies has been constructed for CYP2C9
CYP2C19 probe substrates. A Bayesian meta-analysis of P
parameters to investigate human variability in markers of chroni
exposure to pharmaceuticals (area under the curve (AUC) an
clearance (CL)) for different subgroups of human populations wa
performed using the model published by Wiecek et al. (2019
CYP2C9 and CYP2C19-related UFs were then derived to be furthe
applied toTK, hence correlating (potential) findings of toxicity wit
a corresponding level of chemical exposure. Population distribu
tions reflecting magnitudes of changes in internal dose acros
phenotypes have been derived and correlations between suc
magnitudes and compound-specific parameters were fitted.

2. Material and Methods

2.1. Data collection and harmonisation

Meta-analysis of kinetic data requires sample means an
variations reported by individual studies, classified by compoun
and kinetic parameter. Such data are obtained through systemati
reviews or extensive literature searches (ELS), to ensue compre
hensiveness and transparency (EFSA 2010; FDA 2009). PK data fo
substrates of CYP2C9 and CYP2C19 were collected through an ELS
performed as published previously (Quignot et al. 2015) usin
online databases PubMed (www.ncbi.nlm.nih.gov/pubmed
Embase1 (www.embase.com), Cochrane (all databases, www
cochrane.org), and Web of ScienceTM (www.webofknowledge
com) and covering literature up to 2018. An initial screening o
titles and abstracts, followed by a second screening based on fu
texts, were performed against the inclusion criteria (health
adults, data on polymorphic genotype/phenotype, quantitativ
data including statistical descriptors about PK parameters AU
and/or CL), to identify relevant peer reviewed publications. Studie
in which humans were exposed to more than one compound wer
excluded, as well as articles published in another language tha
English. Substrates of CYP2C9 and CYP2C19 were identified from
the literature. For each compound, the fraction metabolised (Fm
was determined using available literature, including huma
studies reporting excretion of major metabolites and thei
conjugates and/or computing the ratio of the chronic P
parameters (AUC, CL) between PMs and Ems, as well as in vitr

http://www.ncbi.nlm.nih.gov/pubmed
http://www.embase.com
http://www.cochrane.org
http://www.cochrane.org
http://www.webofknowledge.com
http://www.webofknowledge.com
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studies with recombinant enzymes identifying CYP isoforms
involved. For compounds concluded as “major” substrates based
on in vitro data but without data on Fm, a default Fm of 0.6 was
applied. Compound- and enzyme-specific Fm are presented in
Supplementary material 1. PK data for CYP2C9 and CYP2C19
substrates were analysed and meta-analysed as detailed below.

From a data collection perspective, aggregate data are reported
using a range of measures, regardless of whether a geometric or an
arithmetic scale is used. For dispersion, commonly reported
statistics are standard deviation (SD), standard error, 95%
confidence interval, interquartile range or min-max range.
Therefore, before conducting a meta-analysis data must be
converted to a common format. Kinetic data are assumed to be
log-normally distributed (Dorne et al., 2001a, 2001b; Naumann
et al., 1997; Renwick and Lazarus 1998), so all measures of
dispersion were converted to geometric standard deviation (GSD)
and all means or medians to geometric means (GM). For the
purpose of modelling, all values were further transformed into
logarithms to obtain normal distributions. The harmonisation
method is described in (Quignot et al. 2019) and (Wiecek et al.
2019). When reported, ratios of geometric means were used for
model validation.

2.2. Bayesian meta-regression model

2.2.1. Input data
Data were subdivided into AUC and CL for CYP2C9 and CYP2C19

substrates. For this analysis, the inputs were limited to EM
(genotype CYP2C*1/*1) and PM (genotypes CYP2C*2/*2, *2/*3, *3/*3).
Detailed list of studies is presented in Supplementary material 2.
Due to the log-normal nature of the data, input values for the
model were GM, geometric variance (GV) (or converted GM and
GV) and sample sizes. Data were modelled using normal
distributions, after conversion of means and variances onto the
log scale.

2.2.2. Statistical model
The model used is an adaptation of the one detailed in Wiecek

et al. (2019), therefore only a short description is provided below.
Separate models were developed for four sets of data (each
polymorphic pathway and PK parameter). The models charac-
terised (1) the ratios of (geometric) means between EMs and PMs
and, (2) inter-individual variability specific to each polymorphic
group. The aim of the model is to quantify how population means
and variances vary across subgroups of human populations for
kinetic data. The model is concerned with behaviour of means and
Fig. 1. Relationship between fraction metabolised Fm,
variances on parameter-, subgroup- and compound-specific basis.
Indices i = 1,2,N are for the reported logarithms of sample
geometric means, lgm, the reported logarithms of sample
variations, lv, and the respective sample sizes, denoted as n. As
mentioned above, the inputs for the model are the sample means
and variations lgm and lv. These depend on true study means mi

and true study SDs si through sampling distributions. True means
and log-SD’s are then linear functions of compound-, study-,
group-specific parameters:

lgmi � N ðmi;
s2

i

ni
Þ ð1Þ

lvi � Gðni � 1
2

;
ni � 1
2s2

i

Þ ð2Þ

mi ¼  mc
cðiÞ þ  ms

sðiÞ þ logðRiÞ ð3Þ

log sið Þ ¼  gc
cðiÞ þ  ggðiÞ ð4Þ

The prior distributions for model parameters mc
cðiÞ, ms

sðiÞ, ggðiÞ
(respectively: compound-specific mean, study-specific mean,
subgroup-specific variability parameter) are unchanged from the
cited paper (Wiecek et al. 2019). Ratio parameter R is described in
detail below. For the compound-specific variability parameter,
gc
cðiÞ, a Bayesian “hyperparameter” for mean and SD was added, i.e.,

gc
cðiÞ �  N mg ;  s2

g

� �
, where both mean and the SD have distribu-

tion N 0;  2:52
� �

. This allows to estimate a pathway-specific s

value. The Bayesian model was coded and estimated with the
Markov Chain Monte Carlo (MCMC) software Stan, version 2.18
(https://mc-stan.org/) using the Hamiltonian Monte Carlo ap-
proach and standard Bayesian posterior checks to ensure conver-
gence of the MCMC procedure. Four chains with 1,000 post-
warmup iterations each were used. Model code is included in
Supplementary material 3.

Relationship between fraction metabolised Fm, enzyme function (EF)
and probabilistic uncertainty factor UF

Metabolising phenotype (i.e., EM, where EF is assumed to be 1,
or PM, where EF is assumed to be 0) will lead to changes in plasma
concentration of compounds metabolised by the corresponding
enzymes. As shown by Gibbs et al. (2006), the ratios of GMs for PMs
 enzyme function EF and geometric mean ratio R.

https://mc-stan.org/
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to EMs for CL and AUC are:

RCL ¼ CLPM
CLEM

¼ EF � f m þ ð1 � f mÞ ð5Þ

RAUC ¼ 1
RCL

ð6Þ

Both relationships are illustrated in
Fig. 1: when f m is high, the ratio is very sensitive to small

changes in EF.
For CL, UF(x) is a ratio of x-th percentile in PM to the median in

EM individuals. For AUC the relationship is inverted, as by
convention UF is higher than 1. Under the assumption of AUC
and CL following a particular distribution (in this case, log-
normal):

UF 95ð ÞAUC ¼ Q � 0:50; mEM; sEMð Þ
Q 0:95; mPM; sPMð Þ ð7Þ

UF 95ð ÞCL ¼
Q 0:95; mPM; sPMð Þ
Q 0:50; mEM; sEMð Þ ð8Þ

where Q(x,y,z) is an x-th quantile of the log-normal distribution
with mean y and scale z. Therefore, UF depends not only on the
ratio of means, but also on variance parameter.

Using the model, UFs specific to each compound can be
calculated using two relationships:

� mPM ¼ mEMR ¼ mEMðEFf m þ 1 � f mÞ. This relationship is both
drug- and sample-specific. One possible approach is to treat R as
drug-specific, but assume an extreme or “idealised” behaviour of
PMs, where EF is exactly 0. This assumption will exaggerate  UF.

� logðsEMÞ ¼ logðsPMÞ þ gEM , that is, a single parameter (g)
describes the average impact of polymorphism on variance;
the “baseline” variance sPM is however drug-specific.

Using the model, UFs can also be derived for hypothetical
compounds, i.e., by assuming particular value for Fm and using
average estimates of EF and s within the considered population.
Exact method is presented in Results section.

3. Results and discussion

3.1. Overview of data collected

Out of 1,898 studies retrieved, relevant data from 158
publications were extracted, providing 642 PK data (GMs and
Table 1
Summary of the data collection for human pharmacokinetic parameters

CYP Parameter Ns Np Nc n Compounds

2C9 AUC 95 43 21 1,109 acenocoumarol (-R), acenocoumarol (-S), ce
(-R), ibuprofen (-S), lornoxicam, losartan, 

piroxicam, tenoxicam, tolbutamide, torase
2C9 CL 107 42 24 1,359 acenocoumarol (-R), acenocoumarol (-S), ce

glyburide, ibuprofen, ibuprofen (-R), ibup
tenoxicam, tolbutamide, torasemide

2C19 AUC 284 92 23 2,084 carisoprodol, citalopram, citalopram (-R), c
(-R), lanzoprazole (-S), mephenytoin (-R), 

pantoprazole, pantoprazole (-S), pantopra
2C19 CL 156 56 22 1,292 amitriptyline, citalopram, citalopram (-R), 

(-R), hexobarbital (-S), lanzoprazole, meph
omeprazole (-S), pantoprazole, pantopraz

All Total 642 158 53 5,844

Ns: Number of study arms; Np: Number of publications; Nc: Number of compou
GSDs) for AUC and/or clearance parameters of 53 compounds, i
5,844 individuals. The summary of the PK data collected fo
CYP2C9 and CYP2C19 probe substrates is presented in Table 1 an
Fig. 2. Fig. 2 highlights large inter-study differences, in particula
for compounds metabolised by CYP2C9 (wider distribution a
shown in A.). Furthermore, the relationship between inter
phenotypic differences between PMs vs. EMs (as GM ratios) an
compound-specific Fm were larger for CYP2C19 probe substrates
the higher the Fm, the higher the inter-phenotypic difference
between PMs and EMs.

3.2. Meta-regression

The meta-regression explores the relationship between com
pound-specific Fm for CYP2C9 and CYP2C19 and the human inter
phenotypic differences for the two pathways. Parameter prior an
posterior distributions are reported in Supplementary material 4
Simulations were performed using MCMC sampling; thei
convergence were assessed and produced satisfactory and consis
tent results. Overall, the posterior distributions for Fm estimate
were close to the prior distributions in most cases, which suggest
that informative priors on Fm’s are necessary for the statistica
model to be identified. Variability in EFs across studies was large
which can be explained by presence of different genotypes. Indeed
the distribution of mean EFs in the studied human populations wa
found to be multimodal. Post hoc, the distribution on EFs wa
compared with collected CYP2C9 genotypes, however these dat
were not used for inference.

The results in this section are divided according to Fm (3.2.1), E
(3.2.2), inter-phenotypic differences (3.2.3) and between-subjec
variability (3.2.4). These four aspects are then summarised wit
regards to sources of variability (Section 3.2.5) and combine
(Section 3.2.6) in Bayesian calculations of UFs for either specifi
compounds or for a “hypothetical” compound (that is, a compoun
with a pre-defined value of Fm).

3.2.1. Estimation of fraction metabolised
Estimates of Fm for individual compounds are presented i

Supplementary material 4, together with a comparison of posterio
distributions with their prior counterpart. Overall, the matc
between prior distributions (constructed based on Fm reports i
the literature, different to the studies used for input data) an
posterior distributions was good.

In some cases, the posterior provided larger values compared t
that in the prior distribution, suggesting that either the prior wa
an underestimate of the true Fm, or that the model simulation
accounted for inter-phenotypic differences with a higher uncer
tainty. In other few cases, the prior and posterior distribution
lecoxib, chlorpropamide, diclofenac, flurbiprofen, glyburide, ibuprofen, ibuprofen
meloxicam, nateglinide, phenprocoumon (-R), phenprocoumon (-S), phenytoin,
mide, warfarin, warfarin (-R), warfarin (-S)
lecoxib, chlorpropamide, diclofenac, flurbiprofen, fluvastatin (-R), fluvastatin (-S),
rofen (-S), lornoxicam, losartan, meloxicam, nateglinide, phenytoin, piroxicam,

italopram (-S), escitalopram, esomeprazole, gliclazide, lanzoprazole, lanzoprazole
mephenytoin (-S), moclobemide, omeprazole, omeprazole (-R), omeprazole (-S),
zole (-R), rabeprazole, rabeprazole (-R), rabeprazole (-S), voriconazole
citalopram (-S), escitalopram, esomeprazole, gliclazide, hexobarbital, hexobarbital
enytoin (-R), mephenytoin (-S), moclobemide, omeprazole, omeprazole (-R),

ole (-S), pantoprazole (-R), rabeprazole, voriconazole

nds; n: Number of individuals
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were virtually the same, suggesting that Fm for a particular
compound could not be statistically identified using available data.
However, in these cases, even if the estimation of Fm was
uncertain, the Bayesian meta-regression model leveraged all of
the available study data to estimate other model parameters (e.g.,
EF, between-subject variability).

3.2.2. Enzyme function estimates
Substantial variability in (mean) EFs across study arms was

observed (Supplementary material 4). For CYP2C9, median EF for
groups categorised as EMs was 75-77%, and for groups categorised
as PMs, 20-26%. For CYP2C19, EF was 84% for EMs and 11-12% for
PMs for which ranges correspond to 2 different models of AUC and
CL parameters. From the PM and EM distributions, a “typical”
relative EF, as the ratio of EF in PM populations to EF in EM
populations, was then calculated: 0.26-0.34 for CYP2C9 and 0.12-
0.14 for CYP2C19. These ratios were then subsequently used for the
derivation of pathway-related UFs to account for the variability in
EF for PM and EM subgroups (ranging from above 0 to 1).

These estimates, obtained from a large set of human studies, are
valuable findings and provide means to characterise variability in
CYP2C9 and CYP2C19 metabolism across available subgroups of
the human populations. In addition, post hoc comparisons of the
estimated EFs to genotype (rather than phenotype) information,
which has not been used for the meta-regression, were performed.
This comparison illustrated in Fig. 3 confirmed the biological
basis of the mechanistic assumption applied in the model i.e.,
individuals categorised as PMs, those and carrying the allele *3
(particularly homozygous individuals *3/*3) have the lower EF
(Fig. 3).

The calculation of inter-phenotypic differences in PM and
EM subgroups depends not only on the EF ratio calculated
above, but also on the proportions of PMs and EMs in the
population. The proportion of PMs in the Caucasian population
Fig. 2. Distribution of input data (A. logarithms of sample geometric means, lgm; B.
metabolisers PMs and extensive metabolisers EMs, according to Fm).
is on average 4-6% for CYP2C9 and CYP2C19 (Goldstein 2001).
Consequently, it was assumed that the median for PMs lies
within the top 5% of the population distribution and that the
“typical” EF ratio can be used for calculating the ratios in
Section 3.2.3 and 3.2.5.

3.2.3. Estimates of inter-phenotypic differences between extensive and
poor metabolisers for specific CYP2C9 and CYP2C19 substrates

Inter-phenotypic differences in PK parameters for probe
substrates of the CYP2C9 and CYP2C19 isoforms were calculated
as the ratios of geometric means for EM vs PM and assessed as
functions of Fm and EF. These are presented in Fig. 4. For the
calculation, a “typical” relative EF from Section 3.2.1 was assumed
and Fm values were the posterior distributions from the meta-
regression model.

The results showed adequate predictions of inter-phenotypic
differences expressed as geometric mean ratios between EMs and
PMs for probe substrates of CYP2C9 and CYP2C19 (Fig. 4). Overall,
variability from one compound to another was low (<30%).
Major substrates for CYP2C9 (flurbiprofen, celecoxib, meloxicam,
tolbutamide, torasemide, warfarin (-S)) and CYP2C19 (escitalo-
pram, mephenytoin, moclobemide, omeprazole, pantoprazole)
were associated with higher inter-phenotypic differences as well
as larger variability.

3.2.4. Inter-individual variability estimates
Inter-individual variability (s parameter of the log-normal

distribution) was estimated by the model, both in terms of an
average pathway-specific value and in terms of inter-phenotypic
differences to quantify the impact of CYP2C9 and CYP2C19
polymorphism on PK parameters. Inter-compound variability
was also accounted for and is reported in Supplementary Material
4. Overall, the estimated average pathway- and parameter-specific
variability ranged from 26-31%, with a mean CV of 25% for CYP2C9
 logarithms of sample variations, lv; C. ratios of geometric means between poor
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Fig. 3. Distributions of mean EFs in human subpopulations for CYP2C9 clearance and AUC parameters.
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and 40% for CYP2C19. However, uncertainty in the estimates was
significant, suggesting that, 1) variances are difficult to estimate
using the available data and 2) individual compounds have a
considerable impact on variability. Higher CV values ranging
between 60-70% were common for both pathways, with typically
higher values observed for the CYP2C19 pathway. Overall, CV
estimates were in agreement with previous meta-analyses, for
which CV overall mean values of 20% and 44 to 50% were derived
for CYP2C9- and CYP2C19-related variability, respectively, in
healthy adults (Dorne et al. 2003b; Dorne et al. 2004a). Substantial
and significant variability differences were observed for all four
models between PM and EM groups, with variability for the EMs on
average 14% to 47% higher than for the PMs (i.e., CYP2C19 AUC),
depending on the model (see the table detailing gc parameter/
‘gamma_group’ in Supplementary material 4). These inter-
individual differences were also partly compound-dependent.

3.2.5. Sources of variability
Variability within the EM population and within compounds for

the CYP2C9 and CYP2C19 pathways can be partly related to the
fraction of the compound metabolised by the isoform, i.e., amount
of the dose metabolised by the CYP2C enzyme as well as the impact
of liver blood flow for compounds with high clearances. For lower
clearances, liver blood flow has a more limited influence on inter-
individual variability in PMs compared to that for EMs. Further-
more, inter-individual differences within the EM phenotype can be
also explained by a greater homogeneity in the enzyme activity
compared to the PM phenotype. Indeed, in this work, individuals
with genotypes associated with decreased or non-functional
activity were considered as PMs. Additionally, due to weak or
even absence of activity of CYP2C9/CYP2C19 in PMs, metabolism of
CYP2C substrates can be carried out by other CYP450 isoforms. If
this CYP substitution pathway is monomorphic, variability is likel
to be lower. Finally, protein binding and differences in bindin
affinity to the isoforms and enzyme-substrate reaction als
provide rationales for the observed inter-individual difference
in kinetics between compounds.

3.2.6. Derivation of pathway-related uncertainty factors (UFs)
Pathway-related UFs were derived by combining outputs o

inference on Fm (section 3.2.1), mean EFs (section 3.2.2), inter
phenotypic differences in PK parameters (section 3.2.3) an
patient variability within studied groups (section 3.2.4) for eac
set of parameters (AUC, CL) and pathway (CYP2C9, CYP2C19).

3.2.6.1. Compound-specific UFs. Compound-specific UFs were als
calculated for each parameter and both CYP2C9 and CYP2C1
pathways. The full set of results is provided in Supplementar
material 5. Overall, mean estimates for compound-specific UFs t
cover the 95th centile of the population (UF95) were within th
range or above the default TK UF of 3.16 with UFs between 2.1-7.
(compounds handled by CYP2C9) and 2.6-12.8 (CYP2C19
Unsurprisingly, the highest UFs were found for PMs of CYP2C
(7.9) and CYP2C19 (12.8).

Since the calculated values for the compound-specific UFs ar
also Bayesian and therefore variable and uncertain, uncertainty o
some UFs was substantial, especially when ratios were large an
Fm was not known precisely. For example, for CYP2C19 clearanc
of omeprazole (R), the 95% uncertainty interval ranged from 7.7 t
24.1.

Both theoretical (see section 2.2.3) and observed data (se
Supplementary material 5) showed that the 95% UF can often b
exceeded due to combination of high (mean) EF, high Fm, an
inter-individual differences. Hence, major CYP2C substrates woul



Table 2
Pathway-related UFs

2C19 AUC 2C19 CL 2C9 CL 2C9 AUC

Fm 60%, low sigma 3.5 3.4 2.7 2.9
Fm 60%, high sigma 5.7 5.5 4.4 4.8
Fm 90%, low sigma 7.7 7.1 4.0 4.9
Fm 90%, high sigma 12.7 11.7 6.6 8.0

Fig. 4. Inter-phenotypic differences in the pharmacokinetics of CYP2C9 and CYP2C19 probe substrates for markers of chronic exposure (clearance, CL and AUC) expressed as
ratios of geometric means, on log scale, between poor metabolisers PMs and extensive metabolisers EMs. To allow for comparison across CL and AUC, reciprocal of CL was
used.
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require higher UFs to cover such inter-phenotypic differences
compared to minor CYP2C substrates.

3.2.6.2. Pathway-related UFs. Pathway-related UFs were also
derived as a function of EF and Fm (combined into a ratio of
means) and variability. The following assumptions were made:

1 For Fm (contribution of the pathway), hypothetical 60% and 90%
values were considered.

2 For EF, the ratio derived in Section 3.2.2, i.e., the ratio of 5th

percentile in PMs to the median in EMs (specific to each pathway
and parameter), was used.

3 For the variability analysis, the values were based on model
inference on s across studies. The value of 0.3 was used as a
default, considering the typical (average) s in 0.26-0.31 range
estimated by the model. A value of 0.6, which would correspond
to high variability, observed for some compounds, was also
considered.

These three values were then used to derive UFs according to
the overall formula presented in Methods. Average pathway-
related UFs covering the 95th percentile of the population for
CYP2C9 and CYP2C19 were derived (Table 2). When considering
hypothetical compounds with Fm of 60%, UFs were within the
range or slightly above the default TK UF of 3.16: ranges of 2.7-4.8
(CYP2C9 pathway) and 3.4-5.7 (CYP2C19 pathway). When
considering compounds with Fm of 90%, UFs were above the
default TK UF of 3.16, and up to 12.7 for the CYP2C19 pathway,
when considering the high variability scenario.

Overall, when the Fm of a compound by CYP2C9 or CYP2C19
metabolism was low, CYP2C9 and CYP2C19-related UFs were
consistently lower and logically can be associated with a limited
impact of inter-phenotypic differences for the two isoforms. A
CYP2C-related uncertainty factor of 13 could be proposed to cover
95% of the population regardless of the compound, provided it is
metabolised by the isoforms. This is above the range of the
previously estimated CYP2C9-related UF95 ranging from 1.3 to 5.9
for healthy adults (all phenotypes) (Dorne et al. 2004a) and the
previously estimated CYP2C19-related UF95 ranging from 2.0 to
4.7 for healthy adults non-phenotyped, EMs and slow extensive
metabolisers (SEMs), but is below the CYP2C19-related UF95 of 45
for healthy adults PMs (Dorne et al. 2003b).
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4. Conclusions

This manuscript describes extensive literature searches and
meta-regressions for 158 human PK studies to quantify inter-
phenotypic differences (EMs and PMs) in markers of chronic
exposure for CYP2C9 and CYP2C19 probe substrates. Using the
whole dataset, compound-specific Fm and subpopulation-specific
EF, a Bayesian meta-regression model provided a range of
quantitative estimates as the basis to derive compound- and
pathway-related UFs for risk assessment. Broadly speaking, this
study supports the trend to replace the traditional default or
categorically-based UFs using either chemical specific adjustment
factors or data-derived UFs taking into account population
characteristics, dose metrics, exposure scenarios, TK and/or TD,
as well as inter-individual variability to reduce uncertainty in
chemical risk assessment (Bhat et al. 2017). Specifically, the model
developed and the results thereof illustrate the integration of
human variability in CYP2C9 and CYP2C19 metabolism and
CYP2C9- and CYP2C19-related UFs for chemical risk assessment.
Results showed that up to 8.0 and 12.7 (instead of the default
kinetic factor of 3.16) would be required to cover up to 95% of
individuals, respectively.

From a mechanistic point of view, the integration of enzyme
specific parameters (i.e., EF and CYP2C Fm) in the model allowed
the prediction of PK changes between EMs and PMs for a wide
range of CYP2C9 and CYP2C19 pharmaceutical substrates, while
minimising confounding factors. Inclusion of functional conse-
quences for each isoform accounted for the activity and stability of
the enzyme. In this analysis, the authors focused on markers of
chronic exposure, namely AUC and CL parameters, since those
parameters are appropriate to investigate on Fm and its impact on
inter-phenotypic differences in CYP2C9 and CYP2C19, in contrast
with markers of acute exposure which are strongly dependent on
bioavailability (Quignot et al. 2019). The dataset is of direct
relevance for the assessment of PK variability for pharmaceuticals
with a narrow therapeutic index since relatively small alterations
in concentrations may have a direct impact on internal dose,
pharmacodynamic and consequently likelihood of toxicodynamic
consequences. Likewise, the dataset is also of relevance to assess
human variability in TK for emerging designer drugs with
phenotypic dependent toxicity as well as residues of chemicals
in food (e.g. pesticides, food additives, contaminants). An impor-
tant aspect of this analysis is the assumption that PMs may be the
most susceptible group compared to EMs. This assumption is
relevant when the parent compound is the toxic moiety so that the
consequence of metabolism would be detoxification and an
increase in internal dose would increase the risk of adverse effect.
In contrast, if the consequence of CYP2C9/CYP2C19 metabolism is
bioactivation, PMs would have lower internal dose of the toxicant
and EMs would be at higher risk with the most susceptible group
being ultra-rapid metabolisers (URMs). For a potential use of this
approach in drug safety or chemical risk assessment, this study has
been limited to healthy adults because of the available data and the
predicted inter-phenotypic differences and consequently the
pathway-related UFs are likely to be slightly different in other
human subpopulations such as children or neonates (Dorne et al.
2003b), patients prescribed with various co-medications (Xie et al.
2016) as well as patients with impaired renal or liver function
(Almazroo et al. 2017).

Broader application of this approach in chemical risk assess-
ment requires data for in vitro and in vivo kinetic characteristics,
isoform-specific metabolism and toxicodynamics, pathway-
related variability and inter-phenotypic differences. It is foreseen
that the integration of isoform-specific in vitro data within generic
quantitative in vitro to in vivo extrapolation (QIVIVE) models will
allow to test the performance of predictions for inter-phenotypic
differences in polymorphic metabolism for compounds with n
available human kinetic data. Moreover, as in vitro data becom
more available, these models will provide the basis to develo
Quantitative Structure Activity Relationship (QSAR) models for th
prediction of TK properties for a broader range of xenobiotic
(EFSA 2014b). Here, the main TK determinant presented in thi
study is CYP2C9/CYP2C19 metabolism and this approach can b
applied to relevant xenobiotics in food or the environment fo
which in vitro evidence is available (e.g., flavourings, pesticides
food additives, contaminants, etc.), while integrating informatio
on efflux/uptake transporters and other phase I and phase 

enzymes (Darney et al. 2020; Darney et al. 2019; Kasteel et a
2020). In the same manner, available information or prediction
for other kinetic properties including plasma protein binding an
systemic clearance relative to liver blood flow may be considere
to inform such QIVIVE models and allow calibration and mode
evaluation.

Non-invasive in vitro techniques using human cell lines or live
microsomes from donors are now available to generate metabo
lism data and can provide quantitative information including E
and Fm for specific isoforms (Basketter et al. 2012; Bell et al. 2018
Blaauboer et al. 2012). In addition, the use of physiologically-base
kinetic (PBK) model is increasingly recommended in chemical ris
assessment (Bessems et al. 2014; EFSA 2014a; Paini et al. 2019
WHO 2010) and quantification of inter-individual difference
allows for sound development of these models. Combinin
distributions quantifying inter-individual variability and uncer
tainty from PK studies from the pharmaceutical database wit
isoform-specific in vitro data is a promising QIVIVE approach t
reduce uncertainty in chemical risk assessment. With regards t
CYP2C9/CYP2C19-related variability, distributions can be integrat
ed with human in vitro data within PBK models with Markov-Chai
Monte Carlo. Applying a PBK model with distributions for eac
parameter in a Bayesian framework, as previously done by Boi
et al. (2010), allows a better prediction of internal dose an
decreases the uncertainty during risk assessment. This type o
approach avoids the use of default UFs and allows the derivation o
appropriate UFs covering the extent of human variability in T
processes for the chemical under assessment (Punt et al. 2017
Overall, it is foreseen that the analysis and model presented her
can be applied and/or combined with other metabolic pathway
and toxicodynamic endpoints to develop open source generi
human PBK models to inform chemical risk assessment usin
higher tier approaches depending on the level of knowledge (Eino
2007; EMA 2012; FDA 2012; Jamei 2016; Zhuang and Lu 2016). Fo
given compounds metabolised by multiple CYP isoforms, phase 

enzyme isoforms such as UDP-glucuronysyl-transferases (UGTs
and transporters, individual isoforms can already be identifie
using available in vitro methods. Using the approach describe
here, the relative contribution of each isoform, expressed as Fm
can be simulated using MCC, with available human variabilit
distributions for each CYP, UGT isoforms or transporters (includin
inter-phenotypic differences when relevant). Finally, the relativ
contribution of each isoform to the overall variability of th
outcome population distributions can be assessed through globa
sensitivity analysis and used as a basis to derive compound
specific UFs quantifying human variability in TK (Darney et a
2020; Darney et al. 2019; Kasteel et al. 2020).

Ethics approval

Not applicable

Consent to participate

Not applicable



N. Quignot et al. / Toxicology Letters 337 (2021) 111–120 119
Consent for publication

Not applicable

Availability of data and material

Full publication list is provided in Supplementary materials

Code availability

Code is available in Supplementary materials

Funding

This work has been co-financed by the European Food Safety
Authority (EFSA) under contract CFT/EFSA/EMRISK/2012/01 and
Certara.

Transparency document

The Transparency document associated with this article can be
found in the online version.

CRediT authorship contribution statement

N Quignot: Conceptualization, Project administration, Writing -
original draft, Writing - review & editing. W Więcek: Software,
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