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Spatiotemporal clustering 
and Random Forest models 
to identify risk factors of African 
swine fever outbreak in Romania 
in 2018–2019
Mathieu Andraud1*, Stéphanie Bougeard1, Theodora Chesnoiu2 & Nicolas Rose1

African swine fever (ASF) has affected Romania since July 2017, with considerable economic and 
social consequences, despite the implementation of control measures mainly based on stamping 
out of infected pig populations. On the basis of the 2973 cumulative recorded cases up to September 
2019 among wild boars and domestic pigs, analysis of the epidemiological characteristics could help 
to identify the factors favoring the persistence and spread of ASF. A statistical framework, based on 
a random forest methodology, was therefore developed to assess the spatiotemporal features of the 
epidemics and their relationships with environmental, human, and agricultural factors. The landscape 
of Romania was associated with the infection dynamics, particularly concerning forested and wetland 
areas. Waterways were also identified as a pivotal factor, raising questions about possible waterborne 
transmission since these waterways are often used as a water supply for backyard holdings. However, 
human activity was clearly identified as the main risk factor for the spread of ASF. Although the 
situation in Romania cannot be directly transposed to intensive pig farming countries, the findings of 
this study highlight the need for strict biosecurity measures on farms, and during transportation, to 
avoid ASF transmission at large geographic and temporal scales.

African swine fever virus (ASFV) is a DNA virus belonging to the Asfarviridae  family1 and displays considerable 
genetic diversity. The virus can infect wild and domestic Suidae. Certain strains are associated with a case-fatality 
rate close to 100%, especially in domestic pigs which are highly sensitive to the virus. There is currently no vaccine 
available to control the infection. As a result, African swine fever (ASF) has considerable economic consequences 
not only at the herd level, but also at the country level, due to the ban on exports following its emergence in a 
country officially free from the  disease2,3.

Sub-Saharan Africa has been seriously affected by ASF, with the virus being endemic in several  countries4. 
The virus was introduced into Europe several times in 1957 and 1960 (Portugal), and has since been introduced 
occasionally into several European countries with sporadic cases that were rapidly controlled. However, eradica-
tion from the Iberian Peninsula was only achieved in 1995. In 1978, the virus was also introduced into Sardinia, 
where it is still endemic today. Continental Europe was therefore considered free from ASF until 2007, when the 
virus was introduced into Georgia through infected waste coming from a ship originating from Eastern Africa, 
with the waste being fed to domestic backyard  pigs5. The virus, of genotype 2, is highly virulent with a case-fatality 
rate higher than 95% in pigs and wild boars. It spread through Russia and Ukraine, where it affected in particular 
wild boars but also domestic pigs, especially those reared in backyards with poor biosecurity  measures6–8. The 
spread of ASFV extended to Eastern Europe, the Baltic countries, before emerging in  Poland9. The first ASF 
case in the Czech Republic was recorded in June 2017. In late February 2019, after 6 months without any ASF-
positive cases owing to strong control measures, the country was declared ASF-free. In these Eastern European 
countries, the main population affected was wild boars, with only sporadic cases in domestic pigs due to failure 
of biosecurity, and high infection pressure in the wild  reservoir10.
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In Romania, the first notification was reported in July 2017 in the north-west area of Satu Mare. This initial 
incursion had limited consequences in terms of local  spread11. However, an ongoing epidemic was initiated 1 
year later, with more than 1000 cases reported up to October 2018 among both domestic pigs and wild boars. 
The incidence of outbreaks on domestic pig farms was particularly striking in summer 2018 with more than 650 
new outbreaks in 2 months between June 10 and August 19, 2018. By summer 2019, the cumulative number of 
cases in Romania reached nearly 3000, with 13,665 pig owners compensated, at a total cost of 70 million Euros 
(http://www.ansvs a.ro/blog/actua lizar ea-situa tiei-privi nd-evolu tia-peste i-porci ne-afric ane-42/).

The situation concerning ASF in Romania is unique due to both the duration of the outbreak and the number 
of cases that were reported in the domestic pig compartment. In view of the economic and social consequences 
of ASF outbreaks, there is a strong and urgent need to understand and explore the drivers of infection spread, 
to gain insights from these disastrous events. Existing studies have already provided estimates for transmission 
parameters from field and experimental  data7,12–16. We aim here to unravel the determinants of ASF spread at 
the national and local scales in Romania. Two approaches were adopted. On the one hand, a spatiotemporal 
analysis was carried out to identify clusters, providing insights on the epidemiologic relationships between the 
different outbreaks. On the other, topographic and structural determinants of the transmission patterns were 
identified through a risk factor analysis, allowing us to assess the risk of ASF expansion to non-infected areas.

Results
Data description. Romania covers a total area of 238,439  km2 and is divided into 42 counties and 2939 
communes with a very wide range of areas from 1.1 to 797  km2. The smallest commune is the town of Victoria 
in Brasov County and is surrounded by the commune of Ucea de Jos, while the largest is in the Danube Delta 
Nature Reserve in Tulcea county (Murighiol). Geographic, hydrologic, and transportation infrastructure data 
were analyzed at the commune level and are therefore discussed as densities. According to EuroglobalMap speci-
fications, 40,000 km of roads, forming a logical transport network at a map scale of 1:1,000,000 are present across 
the country, with densities ranging between 0 and 1.7 km/km2 at the communal scale. The regions Danube Delta 
and Carpathian mountains show the lowest road densities. Railways are relatively sparsely representing 8000 km 
of line length, mainly located in the south and converging towards Bucharest, and in the northwestern part of 
the country. Wetlands and lakes are quasi-exclusively located in the Danube Delta Nature Reserve, covering 
between 55 and 95% of the communes in this area. The Carpathian Mountains represent the major forestry 
region, although wooded areas are also present at lower altitudes, especially in the county of Braila where the 
Danube flows. Waterways mostly originate in the Carpathian Mountains and flow into the Danube then to the 
Black Sea, forming natural borders with Bulgaria to the south, and Ukraine to the north along the Danube Delta. 
These data are illustrated in Fig. 1 (interactive view in html version).

Figure 1.  Cartography of the geographic variables. All data are presented as densities at the commune level.

http://www.ansvsa.ro/blog/actualizarea-situatiei-privind-evolutia-pestei-porcine-africane-42/
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The average population density was evaluated at 94 inhabitants/km2, with high density values in cities (7700 
inhabitants/km2 in Bucharest), and some areas with densities close to 0 (Danube Delta Nature Reserve, or high-
altitude mountains).

Romania has approximately 5 million domestic pigs distributed in industrial sites, representing 55% of the 
total population, or familial swine holdings, i.e. backyard holdings representing 45%. About 700,000 animals are 
located in the county of Timis, mostly raised at 44 large industrial sites and accounting for 92% of the population. 
In contrast, the county of Dolj accounts for the largest number of sites with approximately 100,000 holdings for 
a total population of about 150,000 pigs (Fig. 2).

The first case of ASF in Romania was officially reported in the county of Satu Mare on July 31, 2017, which 
was followed by six sporadic notifications (in domestic pigs and wild boars) in the same county within the next 
6 months. The epidemic phase was observed 1 year later, at a distance of about 500 km, in the county of Tulcea. 
In contrast with the first viral incursion, these epidemics grew dramatically with up to 50 notifications within 
1 week. Based on these considerations, we limited our analysis to epidemic data from the first case notification 
in Tulcea county, ignoring the first sporadic cases that occurred in Satu Mare. The period considered for the 
analysis therefore ran from June 10, 2018 to August 29, 2019. A total number of 2973 confirmed ASF outbreaks 
were recorded in domestic pigs and wild boars throughout this period. The temporal course of the epidemic 

Figure 2.  Demographic and agricultural data. Data are presented at the commune level (human population, 
backyard pigs) or at the county level (pigs, holdings).

Figure 3.  Temporal characteristics of the ASF epidemics in Romania (epidemiologic data): weekly incidence in 
wild boars, domestic pigs and total population (a), and cumulative incidence throughout the period (b).
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revealed different patterns in domestic pigs and wild boars. As shown in Fig. 3a, the number of new cases among 
the domestic pig population exhibited two distinct peaks, in summer 2018 and summer 2019 respectively, while 
the cumulative number of infected wild boars increased quasi-linearly throughout the study period (Fig. 3b).

Starting in Tulcea county, the virus spread along the Danube Delta and the western coast of the Black Sea. 
The virus then expanded westerly to Braila and Galati counties (Fig. 4a, pink dots). By the end of 2018, 1151 
domestic pig holdings were declared ASF-positive. The epidemiological situation was stable during the first 
semester of 2019. However, a turning point in the epidemic was observed in June 2019 with a sudden increase 
in the number of cases reaching 2351 on August 29, 2019 in 231 communes (Fig. 4b). This secondary outbreak 
mostly extended along the borders with Bulgaria and Hungary (Fig. 4a, red dots).

Spatiotemporal clustering. The number of cases to be classified was N = 2973, including 2371 pig hold-
ing outbreaks and 602 wild boar cases. The eps parameter governing the spatial distances between cases within 
clusters was fixed at 0.5 and concerns both longitude and latitude. With this distance, the close surroundings of 
each commune were likely to belong to the same cluster whenever cases were declared in the same time win-
dow. Values from 5 to 30 days were tested for the time window clustering parameter (eps2 parameter). A 20-day 
period, giving an interpretable and stable number of clusters, was selected. For analyses being carried out at the 
commune scale, the average number of outbreaks in infected communes (5 cases) was considered as the mini-
mum cluster size (minpts parameter). The ST-DBSCAN clustering algorithm identified 14 spatiotemporal clus-
ters that can be interpreted as areas of epidemiologically related cases. The three largest clusters represented 93% 
of ASF cases, including 1319, 1138 and 243 cases, respectively. The size of the remaining clusters varied between 
56 and 4 cases, while 78 cases were considered outliers. The geographic and temporal locations of the clusters are 
described in Table 1, illustrated in Fig. 5a,b, and are further detailed in chronological order. 

Cluster 1 corresponds to the first cases that appeared at the beginning of the study period (June 10, 2018) and 
extended to May 2019 in the county of Tulcea (east of Romania); more than 50% of outbreaks occurred during 
the first 4 months after introduction. In all, 1319 sites were recorded, including 1093 domestic pig holdings and 
226 wild boar carcasses. Then, in summer 2018, 40 cases (pig holdings and wild boars) were reported in the 
county of Bihor (Cluster 2), directly followed by the third cluster in August 2018 in the county of Satu Mare 
(west; 7 domestic pig holdings). Although not included in Cluster 4, the two latter clusters might be the source 
of the epidemics in this Cluster. In total, 243 cases (pigs and wild boars) were reported in Satu Mare and Bihor 
counties over a long period ranging from October 30, 2018 to August 28, 2019; most of these cases occurred in 
spring–summer 2019. Up to April 2019, five local outbreaks (clusters 5–9) of relatively small size, ranging from 
7 to 56 cases, were detected. These clusters mainly concerned wild boars, with only 13 cases in domestic pig 
holdings. However, on April 26, 2019 the second epidemic wave appeared, corresponding to the largest cluster 
(Cluster 10) which gathered 1138 cases in the counties of Teleorman, Giurgiu and Dolj (south), 90% of which 
in domestic pig holdings. In May 2019, two new smaller clusters appeared in the east: Cluster 11 and Cluster 
12, in the counties of Tulcea and Braila, respectively. In June 2019, the small Cluster 13 was detected in the 
center of Romania (Valcea and Arges counties), followed by another hotspot (Cluster 14) of 33 cases in Boto-
sani (northeast). The spatiotemporal clustering demonstrated different spreading routes especially in the three 
large clusters. Clearly, the first large epidemic wave in Tulcea affected a large number of swine holdings within a 
spatially restricted area (Fig. 5b), covering the Danube Delta and the Black Sea coast. Despite the long duration 
of this outbreak (about 11 months), ASF cases remained in a relatively small area. In contrast, the southern and 
western outbreaks revealed wide spatial distribution in a relatively short time window (Fig. 5b).

Figure 4.  Spatial expansion of the ASF epidemics in Romania from June 10, 2018 to August 29, 2019; (a) case 
locations (map created using  R17 (version 4.0.2), packages  tmap18 and  rgdal19), (b) number of domestic pig 
outbreaks per commune.
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Table 1.  Description of the 14 spatiotemporal clusters of ASF in Romania from June 10, 2018 to August 29, 
2019 (N = 2973 cases; 2371 pig holding outbreaks, 602 wild boar cases), given in chronological order. Mean 
values, minimum and maximum (bracketed) values for longitudinal and latitudinal expansion. The counties in 
which the majority of cases for each cluster is given along with the percentage of cases in these counties. The 
colors correspond to the ellipsoids in Fig. 5.

Longitude La�tude Time window County Animal type
Color 

on 
Map

Cluster 1
(N=1,319)

28.13
(25.81, 29.67)

44.90
(43.91, 45.98) 18/06/10 - 19/05/14 Tulcea (50.5%) N=1,093 pig holdings

N=226 boars
Cluster 2 
(N=40)

22.31
(22.08, 22.90)

47.37
(47.20, 47.48) 18/06/26 - 18/08/14 Bihor (72.5%) N=29 pig holdings

N=11 boars
Cluster 3
(N=7)

23.17
(23.15, 23.22)

48.08
(47.96, 48.10) 18/07/31, 18/08/29 Satu Mare (100%) N=7 pig holdings

N=0 boars
Cluster 4
(N=243)

22.31
(21.03, 23.07)

47.21
(46.11, 47.99) 18/10/30 - 19/08/28) Satu Mare (36.6%)

Bihor (36.2%)
N=136 pig holdings

N=107 boars
Cluster 5
(N=56)

24.66
(24.31, 24.80)

43.92
(43.81, 44.25) 18/11/09 - 19/02/21 Teleorman (75%)

Olt (25%)
N=10 pig holdings

N=46 boars
Cluster 6
(N=15)

26.35
(26.26, 26.51)

48.09
(48.04, 48.21) 19/02/15 - 19/03/13 Botosani (100%) N=2 pig holdings

N=13 boars
Cluster 7
(N=8)

24.11
(24.05, 24.37)

47.79
(47.55, 47.93) 19/03/20 - 19/04/27 Maramures 

(87.5%)
N=0 pig holdings

N=8 boars
Cluster 8
(N=8)

26.34
(26.28, 26.59)

48.05
(47.97, 48.07) 19/04/03 - 19/05/16 Botosani (100%) N=0 pig holdings

N=8 boars
Cluster 9
(N=7)

27.81
(27.43, 28.01)

44.14
(44.03, 44.26) 19/04/04 - 19/05/17 Constanta (71.4%)

Calarasi (28.6%)
N=1 pig holdings

N=6 boars

Cluster 10
(N=1,138)

25.51
(22.89, 28.46)

44.25
(43.64, 46.23) 19/04/26- 19/08/31

Teleorman (29.1%)
Giurgiu (18.5%)

Dolj (14.5%)

N=1,011 pig holdings
N=127 boars

Cluster 11
(N=5)

27.60
(27.46, 27.64)

45.29
(45.28, 45.30) 19/05/16 - 19/06/05 Braila (100%) N=5 pig holdings

N=0 boars
Cluster 12
(N=12)

28.48
(28.24, 28.64)

44.94
(44.65, 45.23) 19/05/17 - 19/06/27 Tulcea (91.7%)

Constanta (8.3%)
N=9 pig holdings

N=3 boars
Cluster 13
(N=4)

24.42
(24.24, 24.76)

44.99
(44.88, 45.13) 19/06/10 - 19/06/25 Valcea (75%)

Arges (25%)
N=3 pig holdings

N=1 boar
Cluster 14
(N=33)

26.86
(26.36, 27.02)

47.97
(47.88, 48.24) 19/06/16 - 19/08/28 Botosani (97.0%) N=16 pig holdings

N=17 boars

Figure 5.  Geographic distribution of the 14 spatiotemporal clusters from June 10, 2018 to August 29, 2019 
(N = 2973 cases; 2371 pig holding outbreaks and 602 wild boars cases). (a) 2-dimensional representation; (b) 
3-dimensional plot, time being represented along the third (vertical) axis (interactive view available on request).
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In a second step, we therefore analyzed whether geographic, agricultural, and demographic variables could 
be used as determinants of the spatiotemporal patterns of the 14 spatiotemporal clusters (other than spatial and 
temporal) using a random forest algorithm. The OOB error is equal to 8.67%. Three main indexes relative to 
the 14 explanatory variables’ importance (i.e. Gini decrease, mean depth, and significance) were extracted and 
plotted in Fig. 6a.

The eight (out of 14) significant variables explaining the observed spatiotemporal clusters were household 
density, population density, density of total pigs and of backyard pigs, wetlands, rivers, forests, and road densities. 
Finally, the interactions between the significant variables are studied and illustrated in Fig. 6b. The most frequent 
interactions between explanatory variables (= maximum number of occurrences) are illustrated on the left part 
of the plot (in light blue). They are represented as decreasing number of occurrences; the first eight concern 
household density, with the lowest MMD (1.8). For instance, for interpretation of the main interaction, household 
density was strongly associated with river and forest densities, and allowed for a decrease of the unconditional 
MMD of the forest density variable of 1 point (2.8 to 1.8 and 2.9 to 1.9 for rivers and forests, respectively) when 
interacting with household density. In other words, the impact of river and forest densities is mostly important 
when associated with household density. Maximal subtrees of household density variables were found to split 
six other roots immediately: household density (in the decision tree, a variable may interact with itself when 
used several times to build a tree), backyard density, population density, density of total animals, and road and 
wetland densities. All these variables are in addition associated with the minimal MMD, meaning that these 
interactions have a strong impact on the prediction.

Risk‑factor analysis. Preliminary analyses considering the 2018-based model used to predict data from 
2019 showed that the 2018 and 2019 ASF pig holding outbreaks were clearly associated with different risk fac-
tors. Therefore, in the following, two models of risk factors are proposed, one for the 2018 data and another for 
the 2019 data. Taking the 2939 communes as epidemiologic units, the number of pig holding outbreaks per com-
mune was considered to be the dependent variable in each period (i.e. in 2018 or in 2019). Fourteen potential 
risk factors were measured: thirteen at the commune level and one at the county level (i.e. the number of pig 
holdings, Fig. 2). The thirteen commune-level variables were the densities of forests, wetlands, rivers, roads and 
railways; the density of population and households; the number of towns and of neighboring communes; the 
density of industrial pigs, of backyard pigs and of total animals, and the number of infected wild boars in each 
period (Figs. 1 and 2). Two random forest regressions were applied and interpreted in the following presentation 
of results.

2018 risk factors. The mean of squared residuals was equal to 7.27 and the percentage of explained variance 
was equal to 19.2%, which allows us to consider the model to be of high quality (Fig. 7a). Three main indexes 
relative to the 14 explanatory variables’ importance (i.e. node purity increase, mean depth, and significance) 
were extracted and plotted in Fig. 7b. The number of infected domestic pig holdings in 2018 was mainly related 
to 10 explanatory variables: wetland density, household density, population density, number of pig sites, river 
density, road density, forest density, total pig density, backyard density, and number of neighboring communes. 
In addition, the interactions between the significant variables were studied and illustrated in Fig. 7c. The most 
frequent interactions between explanatory variables (= maximum number of occurrences) are illustrated on the 
left part of the plot (in light blue). The first seven interactions involved environmental variables (wetland, forest 
and river densities). Importantly, these variables are also associated with population variables. These interactions 
are usually associated with low MMD values, meaning that they have a strong impact on the prediction. Most of 
these interactions allow for a decrease of the unconditional MMD of the root variables, when interacting vari-
ables are considered.

2019 risk factors. The mean of squared residuals was equal to 3.33 and the percentage of explained variance 
was equal to 20.4%. The model quality was evaluated with the root mean square of calibration, illustrated in 
Fig. 8a. Concerning these data, model quality was considered to be good. Three main indexes relative to the 14 
explanatory variables’ importance (i.e. node purity increase, mean depth, and significance) were extracted and 
plotted in Fig. 8b. The number of infected domestic pig holdings per commune in 2019 was mainly influenced by 
nine explanatory variables: number of pig sites, river density, forest density, population density, total animal and 
backyard pig density, wetland, road, and household densities. In addition, the interactions between the signifi-
cant variables are studied and illustrated in Fig. 8c. The most frequent interactions (maximum number of occur-
rences) are illustrated on the left part of the plot (in light blue). The most representative interactions involved 
the forest density variable, coupled with animal population variables (number of pig sites and animal density). 
River densities were also identified as important interacting variables, resulting in the highest decrease of MMD 
when interaction with the forest density variable is considered. These interactions are usually associated with low 
values of MMD, meaning that they have a strong impact on the prediction.

Discussion and conclusion
African swine fever is one of the most important diseases affecting pigs and was introduced into the European 
continent 12 years ago. It has spread rapidly to many countries that were ASF-free for decades. Romania has 
been very strongly affected in the last 2 years (2018 and 2019). The first cases were reported from July 2017, and 
since then, about 3000 cases have been confirmed up to mid-2019 among domestic pigs and wild boars. During 
this 2-year period, two epidemic phases can easily be identified, with two peaks of case notifications separated 
by in-between low-noise spread. The Animal Diseases Notification System database provides temporal and 
geolocalization data for each case, enabling spatiotemporal analysis. Three large clusters, gathering 80% of cases, 
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could be identified. Two of these clusters were strongly associated with the two epidemic waves, but revealed 
different spreading patterns. Interestingly, the first one in 2018 extended over a large time-period, but within a 
relatively restricted area (Tulcea county and the Danube Delta). In contrast, the second cluster, covering the 2019 
epidemics, occurred on a short time scale, but with broad geographic expansion from south-west to south-east. 
Finally, the third cluster, although of relatively small size, covered a large western part of the country and lasted 
throughout the whole study period.

Alongside the temporal characteristics, the role of external factors on the cluster patterns was assessed using 
the random forest algorithm. Human and animal demographic data, and geographic and agricultural charac-
teristics, were collected and considered to be potential explanatory variables. On the one hand, a wide diversity 
of landscapes and land cover are present in Romania, raising the question of whether these could be drivers of 
the observed transmission of ASF. On the other, conversely to many countries where pig production is mostly 
industrialized, backyard pig production is extremely popular in Romania and strongly linked to social organiza-
tion, making human activity and demography focal points for transmission of the virus within its target popula-
tion. This was confirmed using the modelling approach, which enabled us to highlight household density as the 
main determinant of cluster membership, along with pig population characteristics (e.g. number of backyard 
animals), followed by environmental variables, in particular wetland and forest cover. Forest cover was found to 
be of primary importance for cluster membership attribution when associated with the household density vari-
able. Altogether, this suggests that related outbreaks (i.e. belonging to the same cluster) were driven by a triad, 
including (i) human activity (population density, household density, roads), (ii) backyard holding population, 
and (iii) environmental characteristics (forests, rivers and wetlands).

The second step of the study focused on the characteristics of ASF outbreaks at the local scale, taking the 
commune as the epidemiologic unit. Owing to their specificities, the two epidemic waves were analyzed sepa-
rately to assess the relevant and specific demographic and environmental determinants of the outbreaks. For 
both outbreaks, environmental data were found to be the main predictors of the outbreak size at the commune 
level, with wetland and forest cover for the years 2018 and 2019, respectively. Along with wetlands in 2018, riv-
ers were also identified as a pivotal factor in 2019, highlighting water as a key driving force for the infection. 
The cases were principally located in the Danube Delta and along the Danube on the border with Bulgaria. This 
raises the question of water supply to backyard animals and potential contamination of waterways by wild boar 
carcasses or waste. However, the analysis of interactions clearly showed that river density was strongly corre-
lated with the transportation network (roads), the distribution of the human population, together with the pig 
population. Therefore, we cannot exclude that rivers may constitute a confounder of other factors more related 
to human activity and the distribution of the pig population. As a result, the human structure again appears 
determinant, especially household density. Due to the sociologic and economic conditions in Romania, this 
variable could reflect the number of backyard holdings and therefore be a good approximation of the targeted 
susceptible population.

The major role of anthropogenic factors represented by the density of roads, water bodies, and the domestic 
swine population (mainly backyard pigs) was also found in a similar study in the Russian  Federation16. Similarly 
to our results, the study found an unexpected high influence of the density of water bodies, and the authors 
assumed this factor was strongly related to the habitat of wild boars. Even though we cannot exclude this explana-
tion, the interactions with other variables more related to human activity found in our study suggest predominant 
involvement of human activity closely linked to the geographic features of the country.

The role of wild boars in domestic pig infection is likely in some cases because of the low level of biosecurity 
in backwards holdings; however, we did not identify a clear link between identified wild boar cases and domestic 

Figure 6.  Random forest classification for the 14 spatiotemporal clusters of ASF in Romania. (a) Explanatory 
variable importance plot to differentiate clusters (N = 2895 cases, including 2322 pig holding outbreaks and 
573 wild boar cases from June 10, 2018 to August 29, 2019). (b) Most frequent interactions between the eight 
significant explanatory variables explaining the 14 spatiotemporal clusters of ASF in Romania from June 10, 
2018 to August 29, 2019 by means of a random forest classification. N = 2895 cases, including 2322 pig holding 
outbreaks and 573 wild boar cases.
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pig outbreaks, especially in 2018. However, this lack of relationship may be due to the relatively low reporting 
of wild boar cases during this period. In fact, the number of cases in the wild population was highlighted as an 
explanatory variable only for the 2019 outbreak. It is clear from the data that the number of reported cases in 
wild boars was higher during this second period, but we could consider whether this difference is real or due 
to improved detection of carcasses. In the Russian Federation, the driving force behind the epidemic in its pre-
liminary stages was direct contact of infected wild boars between each other and with traditionally free-ranging 
domestic pigs on backyard farms. However, the next stage developed mainly because of human activity—illegal 
movement of contaminated pig products from affected regions and swill  feeding20.

A similar pattern was also observed more recently in the epidemics that have affected  China21. The fact that 
for the 2018 Romanian epidemics, wetland was found to be the main driver and then in 2019, the explanation 
moved to greater involvement of anthropogenic variables such as the distribution of pig holdings, roads and 
rivers, also suggests a change in the factors involved. In the initial introduction of the disease, we can assume 
a strong interaction between domestic pigs and wild boars in the highly specific area of the Danube Delta, and 
then increased disease spread due to human activity.

The Romanian ASF situation is unique, due to both the duration of the outbreak and the number of out-
breaks actually reported by the authorities. Although the epidemiologic context is probably closely related to 
the way pig production is organized in the country, lessons should be learned from this experience. Despite 

Figure 7.  Random forest regression results for 2018 ASF outbreaks in Romania at the commune scale (N = 2939 
communes). (a) Observed versus predicted values of the number ASF outbreaks (pig holdings) per commune. 
(b) Explanatory variable importance plot considering node purity increase and mean minimal depth. (c) Mean 
minimal depth for 30 most frequent interactions between the 10 significant explanatory variables.
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strong intervention policies and public awareness initiatives, the ASF virus continued to spread in the wild and 
domestic population, reaching about 3000 holdings. Land cover and water were identified as pivotal factors, but 
they cannot hide the role of human activity, which was identified throughout our study, both at the national and 
local scales. Transposing to intensive farming, these findings highlight the need for strict biosecurity measures 
both on farms and during transportation.

Materials and methods
Data. Four complementary data sources were used to analyze the spatiotemporal patterns of ASF spread, 
and to identify the risk factors associated with the spread of the disease in Romania: geographic, demographic, 
agricultural, and epidemiologic data.

Geographic data. Geospatial data were extracted from a publicly available European-level database called 
EuroGlobalMap (EGM), administered by Eurogeographics. With a resolution of 1:1,000,000, this database cov-
ers 46 European countries and provides hydrologic, transportation, and landscape data. Data for Romania were 
extracted and analyzed at the administrative scales corresponding to communes and counties. Layers corre-
sponding to hydrologic data (waterways) and landscape (wetlands, forests and urban areas) were considered. 
Human activity was also taken into account through transportation infrastructures (roads and railways).

Figure 8.  Random forest regression results for 2019 ASF outbreaks in Romania at the commune scale (N = 2939 
communes). (a) Observed versus predicted values of the number ASF outbreaks (pig holdings) per commune. 
(b) Explanatory variable importance plot considering node purity increase and mean minimal depth. (c) Mean 
minimal depth for 30 most frequent interactions between the 10 significant explanatory variables.
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Demographic data. The National Institute of Statistics of Romania (http://www.insse .ro) provides a wide range 
of datasets regarding demographic characteristics and urbanization. From these datasets, we selected those 
thought to be relevant concerning the spread of ASF. Importantly, the distribution of domestic pigs is considered 
to be strongly related to human occupancy, especially in low-urbanized areas. Therefore, the population density, 
the predominance of urban areas, and the number of households were accounted for in the analysis.

Agricultural data. Data on agricultural activity were focused exclusively on domestic pigs and were provided by 
the Romanian authorities (ANSVSA) or extracted from the county Sanitary Veterinary and Food Safety Direc-
tion websites (DSVSA). These data consist in a census of live pigs at the commune level, as well as the number of 
industrial holdings, and their capacities. We were therefore able to determine the number of backyard animals in 
each locality. The total number of domestic pig holdings per county was obtained from the 2010 general agricul-
tural census carried out by the National Institute of Statistics of Romania (http://www.insse .ro/cms/files /RGA20 
10/Rezul tate%20defi niti ve%20RGA %20201 0/rezul tate%20defi niti ve%20RGA %20201 0.htm).

Epidemiologic data. The Animal Diseases Notification System (ADNS) registers and documents changes in the 
epidemiologic context in Europe, providing accurate data on the location and characteristics of infected sites and 
species—wild boars and domestic pigs for ASF—using GPS coordinates. The epidemiologic unit for domestic 
pigs is the holding, whereas it is the individual for wild boars.

Methods. Spatiotemporal clustering: identifying homogeneous hotspots and related risk factors. Our first ob-
jective was to detect clusters by analyzing the spatial closeness and temporal similarities of the confirmed ASF 
outbreaks, i.e. domestic pig outbreaks and wild boar cases. A spatiotemporal clustering method was applied to 
build clusters of cases. In accordance with the format of our data, a density-based method (e.g., ST-DBSCAN) 
was preferred over a space–time scanning method (e.g., SaTScan). The density-based method has the advantage 
of being able to take into account a large number of cases, and to detect irregularly shaped  clusters22. Density-
based methods define clusters as areas of high densities of cases—interpreted as hotspots—separated by areas 
of low densities.

Clustering algorithm. The ST-DBSCAN clustering algorithm was  applied23. It extends the well-known 
DBSCAN algorithm focused only on spatial data. The ST-DBSCAN algorithm is based on density calculated 
with two-distance radii: a spatial radius and another, which can be temporal for instance. The density estimate is 
the number of cases within a neighborhood. Euclidean distance is adopted to compute neighborhood distances. 
Three parameters must be filled in: (i) “eps”, the neighborhood radius considered for density estimation of spatial 
attributes (i.e. latitude and longitude), (ii) “eps2”, the neighborhood radius considered for density estimation 
of temporal attributes, and (iii) “minpts”, the density threshold (i.e. minimum number of cases) used to detect 
dense areas, and to classify cases according to their status (i.e. core/border/outlier)23,24. The stdbscan R function 
was used (https ://githu b.com/Kersa uson/ST-DBSCA N).

Cluster interpretation. The aim was to highlight explanatory variables that best differentiate the spatiotempo-
ral cluster memberships. A classification method was applied where the categorical dependent variable was the 
cluster membership, and the explanatory variables the, geographic, demographic, agricultural, and epidemio-
logic data (described in “Data description” section). It is important to mention that these explanatory variables 
are likely to have strong correlations. Therefore, a non-parametric classification method, such as a classification 
 tree25, was selected. At the time of the development of machine learning, the random forest  algorithm26 was 
preferred to a classification tree because it has the advantage of correcting overfitting, and thus delivers robust 
results with exceptional empirical accuracy.

Risk‑factors: assessing at the local scale. Our second objective was to identify risk factors for domestic pig infec-
tion related to the spatial risk of ASF at the commune level. The model aimed at modelling the number of ASF 
outbreaks detected in domestic pigs at the commune scale considering geospatial, demographic, and agricultural 
data (described in “Data description” section) as explanatory variables. To obtain a robust and strongly explana-
tory model, even with highly correlated explanatory variables, the random forest algorithm was also applied as a 
non-parametric regression method better defined as a supervised machine learning  algorithm26.

Random forest methodology. The random forest  algorithm26 is an ensemble learning method that operates by 
constructing a collection of decision  trees25. A decision tree is a non-parametric statistical analysis that can be 
applied to classification (i.e. a categorical dependent variable) or to regression (i.e. a quantitative dependent 
variable). A decision tree is built on the whole dataset, whereas a random forest randomly selects observations 
and variables to build a large number of decision trees and then averages the results. More precisely, the set of 
decision trees in a random forest (500 trees) results from two sources of randomness: (i) initial observations are 
modified by BAGGING (= Bootstrap and AGGregatING), and (ii) initial variables are modified by a random 
selection of P’ variables among P (usually set to P′

=
√
P for classification and P’ = P/3 for regression). The final 

random forest model is selected from this ensemble of decision trees by a majority vote, i.e. it aggregates the 
votes from all the trees to decide on the final class of the observation.

Interpretation tools. The random forest algorithm is associated with four interpretation aids. Based on the high 
number of observations and the relatively low number of parameters, Out-Of-Bag (OOB) and Cross-validation 

http://www.insse.ro
http://www.insse.ro/cms/files/RGA2010/Rezultate%20definitive%20RGA%202010/rezultate%20definitive%20RGA%202010.htm
http://www.insse.ro/cms/files/RGA2010/Rezultate%20definitive%20RGA%202010/rezultate%20definitive%20RGA%202010.htm
https://github.com/Kersauson/ST-DBSCAN
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(CV) error would behave  similarly27. Owing to this, OOB being a classical indicator for RF, we used OOB for 
evaluating the quality of model outcomes. First, the overall quality of the final model is evaluated by the Out-Of-
Bag (OOB) error, processed on all the bootstrapped trees that do not contain observations used to process the 
OOB error. This error is a percentage of correctly classified observations (classification) or a mean of squared 
residuals (regression). Second, the importance of an explanatory variable in the model derives from the OOB 
 error28. For the purposes of classification, the importance corresponds to the mean decrease in the Gini index 
of node impurity by splits on the variable under study (i.e. values for this variable are randomly swapped in 
OOB samples). Of note, swapping the rows of a “noise” variable tends neither to increase nor to decrease node 
purities, while swapping the rows of an “important” variable tends to yield a relatively large decrease in the Gini 
index. For the purposes of regression, the importance of the variable is measured by the node purity increase 
index. Third, two additional indexes relative to this importance can be given: the mean minimal depth (MMD) 
and the significance of the variable’s importance. The MMD assumes that variables with a strong impact on the 
prediction are those that more frequently split nodes nearest to the trunks of the trees (i.e. at the root node). This 
index is measured by averaging the depth of the first split for each variable over all the trees within the forest. 
Lower values of this measure indicate variables that are important in splitting observations. The significance is 
based on a binomial test that tells us whether the observed number of successes (i.e. number of nodes in which 
the variable was used for splitting) exceeds the theoretical number of successes if they were at random. Fourth, 
the most frequent interactions (occurrences) between explanatory variables (i.e. splits appearing in maximal 
subtrees with respect to one of the variables selected) can be given. In addition, these occurrences can be associ-
ated with the MMD of these interactions.

In practice. The RandomForest and the randomForestExplainer R packages were used (https ://githu b.com/
Model Orien ted/rando mFore stExp laine r). To get reproducible results, the arguments of the functions of these 
two packages are set as the default ones.
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