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Abstract 9 

To be able to predict reversed phase liquid chromatographic (RPLC) retention times of 10 

contaminants is an asset in order to solve food contamination issues. The development of 11 

quantitative structure–retention relationship models (QSRR) requires selection of the best 12 

molecular descriptors and machine-learning algorithms. In the present work, two main 13 

approaches have been tested and compared, one based on an extensive literature review to 14 

select the best set of molecular descriptors (16), and a second with diverse strategies in order 15 

to select among 1545 molecular descriptors (MD), 16 MD. In both cases, a deep neural 16 

network (DNN) were optimized through a gridsearch.  17 
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1. Introduction 22 

Contaminants and especially pesticides in food are of growing concern as the general 23 

public is increasingly aware about their health effects (Dashtbozorgi et al., 2013). Depending 24 

on their concentrations, toxicity, and frequence of detection in food and in the environment, 25 
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pesticides may lead to health impairment, disease and even death (Colosio et al., 2017). 26 

Detecting and quantifying these compounds helps to guarantee compliance of imported goods 27 

with the laws and regulations of the importing country (Chiesa et al., 2016). 28 

The high accuracy and mass sensitivity of high-resolution mass spectrometry (HRMS) 29 

instruments hyphenated to liquid (LC) or gas (GC) chromatography make it possible to 30 

observe thousands of chemical features in food and environment samples. These features 31 

include monoisotopic exact mass, chromatographic retention time (RT), abundance, isotope 32 

profiles and MS² fragmentations. However, data processing and chemical characterization 33 

remain difficult despite recent developments. Chemical reference standards and spectral data 34 

enable us to confirm the structure of observed characteristics, but reference standards, 35 

especially metabolites and by-products, are rarely available for thousands of characteristics in 36 

non-target analysis (NTA) and suspect screening analysis (SSA) (McEachran et al., 2018), 37 

and having these thousands of standards can also represent a considerable cost.  38 

Since the appearance of HRMS, the interest in improving confidence in the identification of 39 

small molecules increase, such as pesticides, from putative positive samples based on 40 

detection to confirmation (Bade et al., 2015a; Schymanski et al., 2014). SSA studies are those 41 

in which observed but unknown features are compared against a database of chemical 42 

suspects to identify plausible hits. NTA studies are those in which chemical structures of 43 

unknown compounds are postulated without the aid of suspect lists (Sobus et al., 2018). In 44 

both cases, confirming the identification of a contaminant requires its standard, which may be 45 

unavailable, expensive, or time-consuming to obtain in the case of food poisoning. This is 46 

especially true for pesticides where there are a few thousand analytes, metabolites and by-47 

products. In order to increase confidence in the tentative identification of compounds, 48 

especially in SSA, it is conceivable to predict their chromatographic retention time (RT) 49 

(Bade et al., 2015b; Barron and McEneff, 2016; Parinet, 2021; Randazzo et al., 2016). 50 



To predict RT, different strategies using various molecular descriptor (MD) sets and multiple 51 

machine-learning algorithms have been tested and published (Aalizadeh et al., 2019; Bade et 52 

al., 2015a; Barron and McEneff, 2016; Goryński et al., 2013; McEachran et al., 2018; Munro 53 

et al., 2015; Noreldeen et al., 2018; Parinet, 2021; Randazzo et al., 2016). These strategies 54 

range from the use of logKow models (Bade et al., 2015b) to more complex in silico 55 

approaches based on quantitative structure-retention relationship (QSRR) modeling, including 56 

artificial neural networks (ANNs), support vector machines (SVMs), random forest (RF), 57 

partial least squares regression (PLS-R), and multilinear regression (MLR) (Ghasemi and 58 

Saaidpour, 2009; Munro et al., 2015; Parinet, 2021).  59 

In the first part of this study, two different approaches were tested and compared in order to 60 

build an effective QSRR model dedicated specifically to predicting pesticide RTs analyzed by 61 

reversed-phase liquid chromatography (RPLC) (C18) in SSA or NTA. The first approach was 62 

based on an exhaustive literature review in order to find the best MD set to predict pesticide 63 

RTs. The second approach had no preconceived ideas as to which MDs that should be 64 

selected among 1545 MDs to feed the QSRR. Indeed, in this second approach, various 65 

strategies using the Lasso regression, a Pearson correlation feature selection (Pearson), a 66 

recursive feature elimination (RFE) and the use of principal components analysis (PCA) have 67 

been used in order to select among the entire MD available, sixteen MD. In both cases, a deep 68 

learning algorithm was retained and optimized (a multilayer perceptron (MLP)) in order to 69 

predict RTs of pesticides, and a comparison was done between the two approaches in order to 70 

select the best one.  71 

 72 

 73 

2. Materials and Methods 74 

2.1 Dataset 75 



Initially, the dataset included 843 RTs of pesticides collected from the article of Wang et al. 76 

(2019). Ultra-high-performance liquid chromatography (UHPLC) gradient conditions, column 77 

temperatures, mobile phases, columns, and instruments used to generate the data presented in 78 

detail in Wang et al. (2019).  79 

Three free software applications have been used in order to compute the pesticide’s MD. 80 

These applications are free, can calculate a large number of descriptors and are widely 81 

available. The ACD software (Advanced Chemistry Development, Toronto, ON, Canada) was 82 

used to calculate LogP and LogD. The Toxicity Estimation Software Tool (TEST, Cincinnati, 83 

OH, USA) was used to compute Hy, Ui, IB, BEHp1, BEHp2, GATS1m, and GATS2m. The 84 

rest of the molecular descriptors (1834 MD) were calculated using the ChemDes online 85 

platform (http://scbdd.com/chemdes/).  86 

Once the MDs were computed, the dataset was cleaned in order to remove constant and 87 

missing values (Figure 1). Indeed, constant values are useless in order to develop QSRR 88 

models and missing values make learning and prediction impossible. The missing values are 89 

due to the softwares and their inability to generate, depending on the molecules, the MD. At 90 

the end of this curation process, 792 pesticides, their RTs, and 1545 MDs remained in the 91 

final dataset. The dataset containing the MDs for each pesticide was then ready to build 92 

QSRR models (Table S1). 93 

 94 

2.2 QSRR model development 95 

The dataset constituted previously and containing the pesticides (792), their MDs (1545), and 96 

RTs was used in order to select among them the best MDs inherited from the literature review 97 

(Model 1). Importantly, in order to find the best set of MDs, a literature review was done by 98 

selecting the most recent and pertinent papers with the following criteria: the prediction of 99 

retention times measured by RPLC and for pesticides or similar compounds (pharmaceuticals, 100 



veterinary drugs). At the end of this literature review, seven articles, their MDs, and models 101 

were selected (shown in Table 1 with their performances) and compared in term of 102 

performance measured principally through the percentage of error, which is the ratio between 103 

the root mean square error (RMSE) divided by the maximum retention time measured on the 104 

last eluted compound. In order to pursue the no a priori approach on which MD to select 105 

(Model 2 to Model 8), diverse strategies were used and compared in order to select among the 106 

1545 MD, the best sixteen MD. Sixteen MD were retained in order to be able to compare the 107 

performances of the models (Model 2 to 8) to the model inherited from the literature review 108 

(Model 1).  Hence, the Lasso regression, a regularized linear regression that aims to constrain 109 

the coefficients to be close to 0 or equal to zero, thus allowing an automatic selection of the 110 

characteristics/MD, here 16 MD (ATS8m, ATS5i, iedm, SRW10, ATS5v, VR2_Dt, VR1_D, 111 

VR1_Dt, VR2_D, ATS8i, ATS7i, ATS3i, ATSC3m, ATS0m, ATS0v, ATS4v). The second 112 

strategy was based on the Pearson correlation between the 1545 MD and the output 113 

(pesticides RTs), and the larger the relationship and more likely the feature/MD should be 114 

selected for modeling, then sixteen MD were selected based on this strategy (LogP, BEHm4, 115 

CrippenLogP, ALOGP2, ALOGP, XLOGP2, XLOGP, ATS6p, ATS5p, ATS4p, ATS3p, ATS1p, 116 

ATS6v, BEHm8, BEHm5, BEHm7). The third strategy, a recursive feature elimination (RFE), 117 

was based on an iterative selection of features/MD made by initially selecting all the MD, 118 

then a model is built (here a multi-linear regression), then the least important characteristic is 119 

rejected and this process is done until a model with 16 MD is obtained (maxtsC, MWC2, 120 

MWC03, MWC4, MWC5, nN, k2, MDEN-23, MDEN-33, MDEO-11, MDEO-12, MDEC-34, 121 

MDEC-44, MAXDP2, MDEN-22, ieadjmm). Finally, the fourth strategy was based on 122 

principal component analysis (PCA) and declined under four sub strategies (PCA1 to PCA4). 123 

For the four sub strategies, the same PCA was used. Hence, a PCA was done on the 1545 MD 124 

and measured on the 792 pesticides. The MD were normalized (reduced and centered) before 125 



doing the PCA and 16 principal components (PC) were retained; PCA1 strategy was based on 126 

the selection of the MD most correlated to each PC, thus 16 MD were selected (TWC, CIC1, 127 

ETA_Epsilon_2, AATS1p, icyce, MLFER_E, MATS2v, nCl, AATSC3p, R, JGI3, StsC, 128 

nHCHnX, ATSC6e, MATS6i, MATS6m). The PCA2 strategy was based on the selection of the 129 

16 MD most correlated to PC1, as PC1 was the PC the most correlated to RT (TWC, Zagreb, 130 

nBonds, nBO, MWC01, SRW02, MPC01, ZM1, WTPT-1, SRW04, CID, nHeavyAtom, MPC2, 131 

nSK, SRW01, BID). The PCA3 strategy was based on the selection of the 16 MD most 132 

correlated to PC1 (8 MD) and PC4 (8 MD) as PC1 and PC4 were the most correlated to RT 133 

(TWC, Zagreb, nBonds, nBO, MWC01, SRW02, MPC01, ZM1, AATS1p, AATS0p, AATS4p, 134 

Mp, ETA_AlphaP, AATS3p, AATS5p, AATS2p). Finally, the PCA4 strategy was based on the 135 

selection of the 16 PC and their corresponding scores used as input (PC1 to PC16).  136 

Regardless of the MD dataset used, the following procedure was used. The MD datasets, and 137 

the corresponding values of pesticide RTs, were divided into three subsets: a training, a test 138 

and a validation dataset (Figure 1). The training dataset was composed of 445 pesticides 139 

chosen randomly, their corresponding MD (input) and experimentally measured pesticide RTs 140 

(output). The test dataset was composed of 148 pesticides chosen randomly, their 141 

corresponding MD (input) and experimentally measured pesticide RTs (output). The training 142 

and a test set have a size ratio of three to one, respectively. The validation dataset was 143 

composed of 198 randomly chosen pesticides never used before, their corresponding MDs, 144 

and experimentally measured pesticide RTs.  145 

Initially, the training dataset was used to train the DNN, here an MLP, by tuning the hyper-146 

parameters through a gridsearch and a cross-validation process, where the training dataset was 147 

divided in five equal size sub-datasets (cv = 5). The hyper-parameters tuned were: 148 



- Number of hidden layers constituted each by a number of neurons equal to the number 149 

of MD used as inputs Geron (2017): from 1 to 5 hidden layers constituted each by 16 150 

neurons 151 

- The activation function among: ReLu, tanh and logistic 152 

- The alpha value: 10 or 1 153 

- The solver function among: Adam, SGD and Lbfgs. 154 

The data were standardized (mean-centered) in order to accelerate and enhance the training 155 

and the predictions, and also to simplify interpretation of the importance of the features/MDs.  156 

All the models were developed with Python 3.8 from the Python Software Foundation and 157 

available at http://www.python.org. In order to optimize and develop the DNN, the Scikit-158 

learn library (https://scikit-learn.org) was used and in particular the sklearn.neural_network 159 

module.  160 

  161 

 162 

2.3 Model validation 163 

The validation of QSRR models is probably the most significant and critical part of model 164 

evaluation in order to prevent overfitting in particular. For this reason, we carried out the 165 

validation step using the validation dataset never used for the training and testing parts 166 

(Noreldeen et al., 2018) (Figure 1).  167 

The coefficient of determination (R²) and the RMSE were used to evaluate and compare the 168 

models extracted from the literature review and were measured on the test set (Table 1). 169 

These parameters were also used for the models developed in this study in order to determine 170 

the error between the experimental and predicted RTs in the QSRR models, especially in 171 

terms of their ability to be generalized to new pesticide substances with unknown RTs. The 172 

lower the RMSE and the higher the R² value, the better the model. The R² and RMSE were 173 



measured, in the case of the models developed in this present study, on the training set (n = 174 

445 pesticides), on the test set (n = 148 pesticides), and on the validation set (n = 198 175 

pesticides) (Table 2).   176 

The percentage of error was used to compare the models. Of note, the gradient durations are 177 

not the same between the different studies mentioned in the literature review (Table 1), and 178 

an RMSE of 1 minute does not have the same meaning for a gradient of 10 minutes or for a 179 

gradient of 40 minutes. For this reason, the maximum chromatographic retention time (RT 180 

max) was systematic recorded (Tables 1, 2). The RT max, displayed in Table 2, corresponds 181 

to the elution time of the last compound analyzed.  182 

The following statistics were calculated using Python Software (Version 3.8) for model 183 

validation and comparison (McEachran et al., 2018): 184 

• The coefficient of determination (R²) between predicted and experimental RTs was 185 

calculated as follows (Eq.1): 186 

�� = 1 −  ∑ �	
�	�
 �� 
�

��

∑ �	
�	�� ���

��

                      (1) 187 

where ��
  and �� are the predicted and experimental RTs, respectively, and ���  is the mean 188 

experimental RT.  189 

• The root mean square error (RMSE) between predicted and experimental RTs was 190 

calculated as follows (Eq.2): 191 

RMSE = �∑ �	
�	�
 ���
��
�                        (2) 192 

where ��
  and �� are the predicted and experimental responses, respectively. 193 

• The percentage of error (% error) was calculated as follows (Eq.3): 194 

Percentage of error = �RMSE  validation set ÷ �( max +,-./0,1� ×  100        195 

(3) 196 

 197 



2.4 Structure of the DNN 198 

DNN is a computer program inspired by the biological neural network and designed in order 199 

to modelize complex, non-linear problems (classification or regression). A typical DNN is 200 

composed of a number of neurons from a few to millions, which are arranged in a series of 201 

layers (Zhong et al., 2020). A neuron is a computational unit that has one or more weighted 202 

input connections, a transfer function that combines the inputs in some way, and an output 203 

connection. The input neurons in the input layer are designed to receive the data, such as the 204 

MDs used here, and the output neurons in the last layer are the final predictions made by the 205 

DNN, which will be used to compare with the true target data, such as RTs of pesticides. 206 

Between the input layer and the output layer are hidden layers, often more than one layer 207 

(Zhong et al., 2020) in case of DNN. The input data go into the DNN through the input layer, 208 

are then transformed in the hidden layers, and finally become the predictions in the output 209 

layer. The values in all neurons in the hidden and output layers are calculated by the 210 

application of an activation function on the sum of the values in the previous 211 

neurons×weight+bias calculation, in which weights and biases can be updated based on the 212 

errors between the predictions and the target until the errors reach a minimum value. Update 213 

of the weights and biases is done through back-propagation of the errors between the target 214 

(RT experimental) and the prediction (RT predicted). This process is the “learning” process of 215 

DNN. DNNs have two main hyperparameters: the number of neurons per layer, and the 216 

number of layers. The number of layers and neurons is also called the “depth” and “width” of 217 

DNN, respectively. Larger numbers of layers and neurons mean deeper and wider DNNs, 218 

which often have more powerful fitting ability and can achieve better accuracy on the 219 

prediction. However, too many layers and neurons can lead to an overfitting problem, which 220 

is an accurate prediction on the training set but poorer prediction on the test set. It is crucial 221 

for the DNN to be able to generalize on a dataset never seen before. For this last reason, we 222 



split the dataset into a training, test and validation datasets, in order to evaluate the capacity of 223 

the DNN to generalize. The model development process is hence to develop an optimum 224 

architecture of the DNN with an appropriate fitting ability. In this study, our DNN was 225 

composed of an input layer, several hidden layers, and an output layer. In each layer, there are 226 

numerous neurons accepting values from the neurons of the neighboring layer. In the input 227 

and hidden layers, the number of neurons was equal to the number of MDs selected. For 228 

instance, if the number was 16 MDs, then there were 16 neurons in the input and in each 229 

hidden layer, as suggested by Geron (2017). The number of neurons in the output layer was 1 230 

because there was only one RT for each pesticide. The number of neurons in the hidden layers 231 

was set manually before the learning process began. Here, we focused on the following 232 

hyperparameters: the number of hidden layers, the activation function, the alpha value, and 233 

the solver used. We investigated their effects on the performance of the DNN through a 234 

gridsearch and a cross-validation (cv=5) process done on the training set. The R² and RMSE 235 

values were calculated to evaluate the effects of the hyperparameters on the performances of 236 

the models developed and on overfitting. A detailed description of the theory behind DNNs 237 

has been adequately provided elsewhere (Zhong et al., 2020). Model training was stopped 238 

after 1000 epochs (iterations). 239 

 240 

3. Results and discussion 241 

For a DNN, prediction accuracy is highly related to its structure, the number of layers, 242 

neurons, other hyperparameters (activation function, solver for weight optimization, etc.), and 243 

even more to the inputs retained, in our case the MDs.  244 

3.1 Comparison of published QSRR models  245 

One of the main bottlenecks in designing QSRR models is selecting the MDs (May et al., 246 

2011; Parinet, 2021; Scotti et al., 2016). The selection of the most suitable MDs, among 247 



several thousand, can follow various strategies (May et al., 2011); this step is particularly 248 

complicated because there are many molecular descriptors that can be calculated and used 249 

(Aalizadeh et al., 2019; Bade et al., 2015b, 2015a; McEachran et al., 2018; Munro et al., 250 

2015; Noreldeen et al., 2018) and many strategies to select the MDs.  251 

Here, to develop the most accurate QSRR dedicated to pesticides, we used two different 252 

approaches. The first approach was based on an extensive literature review on the prediction 253 

of RPLC retention times of compounds similar in their structures and properties to pesticides, 254 

such as pharmaceuticals and veterinary drugs. Based on this literature review, seven articles 255 

emerged (Table 1). In order to select the best set of MDs among the seven research papers, a 256 

study of the QSRR models developed was carried out. In order to do this, the performances of 257 

the QSRR models were documented and compared (Table 1). The number of contaminants 258 

used to build and optimize the QSRR models was found to be between 95 and 1830 259 

compounds, the number of MDs selected was between 5 and 16, and the RT max values 260 

measured were between 9.3 and 40.8 min. The machine learning algorithms used were SVM, 261 

DNN (MLP and general regression neural networks (GRNN)), and MLR. The performances 262 

measured on the test set are for the R² between 0.63 and 0.95, and for the RMSE between 0.62 263 

and 1.42 min. Nevertheless, the gradients are not similar, reflected by the different RT max 264 

measurements. The RMSE and the R² alone are not sufficient to determine which MD set and 265 

QSRR model is the most efficient. For this reason, we calculated the percentage of error (Eq. 266 

3), which was not done in the recent article of Parinet (2021) where all the references 267 

selected, and their corresponding MD datasets were applied directly on the pesticides dataset 268 

in order to make the prediction of RT. The percentage of error was between 5.4% and 9.4%. 269 

The lowest value for the percentage of error was obtained for the QSRR developed by Bade 270 

and colleagues (2015) on 544 emerging contaminants and by the use of 16 MDs (nDB, nTB, 271 

nC, nO, nR04-nR09, UI, Hy, MLogP, ALogP, LogP, LogD) and a DNN (MLP). Based on 272 



these results, we retained for our QSRR development, the Bade and colleagues (2015) MD set 273 

and the MLP as the best ML algorithm to use (model 1) with a percentage of error equal to 274 

5.4%. Then, we used the MD listed by Bade and colleagues (2015) on our dataset and through 275 

a MLP (Bade-MLP – Model 1) as described before in the text. By this approach we got a R² 276 

on the training and test set equal to 0.95 and 0.90, respectively (Table 2, Figure S1A & S1B). 277 

The RMSE obtained on the training and test set were equal to 0.43 and 0.63. On the validation 278 

set, never used for the learning and optimizing process, the R² was equal to 0.82 and the 279 

RMSE equal to 0.67 (Table 2, Figure S1C). These past results are similar to those obtained 280 

by Parinet (2021) with the McEachran 3 MDs, on the validation dataset, and by the use of 281 

SVM and MLP as machine learning algorithms where the R² were between 0.85-0.89 and the 282 

RMSE between 0.64-0.69, respectively. The percentage of error obtained thanks to these 283 

molecular descriptors and with a MLP was around 6%, which is close to the 5.4% got by 284 

Bade and colleagues (2015) on their compounds.  285 

3.2 Comparison between QSRR models developed thanks to the literature review and to the 286 

no a priori approaches 287 

To develop the most efficient QSRR model specifically for pesticides, we compared the 288 

performances obtained for Model 1 (Bade-MLP) with those of Model 2 to 8 (no a priori 289 

approach).  290 

The performances of Model 2 (Lasso-MLP) applied on our pesticide dataset gave R² on the 291 

training and test set equal to 0.60 and 0.50, respectively (Table 2, Figure S2A & S2B). The 292 

RMSE obtained on the training and test set were equal to 1.19 and 1.27. On the validation set, 293 

the R² was equal to 0.49 and the RMSE equal to 1.36 (Table 2, Figure S2C). The percentage 294 

of error obtained thanks to these molecular descriptors and with a MLP was around 12%, 295 

which is twice as much as Model 1 (Bade-MLP) with 6% on the same compounds. 296 



The performances of Model 3 (Pearson-MLP) applied on our pesticide dataset gave R² on the 297 

training and test set equal to 0.79 and 0.79, respectively (Table 2, Figure S3A & S3B). The 298 

RMSE obtained on the training and test set were equal to 0.86 and 0.83. On the validation set, 299 

the R² was equal to 0.78 and the RMSE equal to 0.88 (Table 2, Figure S3C). The percentage 300 

of error obtained thanks to these molecular descriptors and with a MLP was around 8%, 301 

which is less good as Model 1 (Bade-MLP) with 6% on the same compounds but much better 302 

than Model 2. 303 

The performances of Model 4 (RFE-MLP) applied on our pesticide dataset gave R² on the 304 

training and test set equal to 0.69 and 0.60, respectively (Table 2, Figure S4A & S4B). The 305 

RMSE obtained on the training and test set were equal to 1.04 and 1.15. On the  validation 306 

set, the R² was equal to 0.63 and the RMSE equal to 1.16 (Table 2, Figure S4C). The 307 

percentage of error obtained thanks to these molecular descriptors and with a MLP was 308 

around 10%, which is less good as Model 1 (Bade-MLP) with 6% on the same compounds, 309 

and less good as Model 3. 310 

The performances of Model 5 (PCA1-MLP) applied on our pesticide dataset gave R² on the 311 

training and test set equal to 0.75 and 0.61, respectively (Table 2, Figure S5A & S5B). The 312 

RMSE obtained on the training and test set were equal to 0.94 and 1.12. On the validation set, 313 

the R² was equal to 0.64 and the RMSE equal to 1.14 (Table 2, Figure S5C). The percentage 314 

of error obtained thanks to these molecular descriptors and with a MLP was around 10%, 315 

which is less good as Model 1 (Bade-MLP) with 6% on the same compounds, and quite 316 

similar to Model 4. 317 

The performances of Model 6 (PCA2-MLP) applied on our pesticide dataset gave R² on the 318 

training and test set equal to 0.42 and 0.34, respectively (Table 2, Figure S6A & S6B). The 319 

RMSE obtained on the training and test set were equal to 1.44 and 1.47. On the  validation 320 

set, the R² was equal to 0.38 and the RMSE equal to 1.50 (Table 2, Figure S6C). The 321 



percentage of error obtained thanks to these molecular descriptors and with a MLP was 322 

around 13%, which is less good as Model 1 (Bade-MLP) with 6% on the same compounds, 323 

and the worst model developed with performances quite similar to Model 2. 324 

The performances of Model 7 (PCA3-MLP) applied on our pesticide dataset gave R² on the 325 

training and test set equal to 0.61 and 0.53, respectively (Table 2, Figure S7A & S7B). The 326 

RMSE obtained on the training and test set were equal to 1.18 and 1.24. On the  validation 327 

set, the R² was equal to 0.56 and the RMSE equal to 1.26 (Table 2, Figure S7C). The 328 

percentage of error obtained thanks to these molecular descriptors and with a MLP was 329 

around 11%, a little better than Model 5 but which is less good as Model 1 (Bade-MLP) with 330 

6% on the same compounds. 331 

The performances of Model 8 (PCA4-MLP) applied on our pesticide dataset gave R² on the 332 

training and test set equal to 0.82 and 0.75, respectively (Table 2, Figure S8A & S8B). The 333 

RMSE obtained on the training and test set were equal to 0.79 and 0.91. On the validation set, 334 

the R² was equal to 0.76 and the RMSE equal to 0.93 (Table 2, Figure S8C). The percentage 335 

of error obtained thanks to these molecular descriptors and with a MLP was around 8%, better 336 

than all the models developed thanks to the PCA approach and similar in term of 337 

performances to Model 3, but still less good as Model 1 (Bade-MLP). 338 

Whatever the strategy used, the model which offers the best performances, is the Model 1 339 

(Bade-MLP) inherited from the literature review. Nevertheless, the no a priori approach 340 

offers two models (Model 3 and Model 8) with effective performances. Among all the models 341 

developed thanks to the PCA approach, the Model 8 offers the best performances, and then 342 

comes next the Model 5 and 7 and finally the Model 6 that is the worst one.  343 

3.3 Optimization of the hyperparameters 344 

The QSRR models were optimized using an MLP through a gridsearch process. Nevertheless, 345 

the number of neurons per hidden layers was set manually and was determined by applying 346 



the recommendations of Geron (2017). Importantly, Geron mentions that the common 347 

practice of sizing the hidden layers to form a funnel, with an ever-decreasing number of 348 

neurons at each layer is no longer as common, and instead we can simply give the same size 349 

to all the hidden layers, resulting in only one hyperparameter to adjust instead of one per 350 

layer. Nonetheless, it is more useful, still according to Geron (2017), to increase the number 351 

of layers rather than the number of neurons per layer. For this reason, the number of hidden 352 

layers used by the gridsearch was between 1 to 5 layers, irrespective of the QSRR.  353 

Once the number of neurons per hidden layer and the number of hidden layers are set, there 354 

remains a large number of hyperparameters to optimize. Nevertheless, some of them are more 355 

important than others, such as the activation function and the solver used. For this reason, the 356 

gridsearch for the activation function was done among the following functions: ReLu, tanh, 357 

and logistic. A gridsearch was also carried out to select the best solver among three possible 358 

choices (Adam, SGD and Lbfgs). The last hyperparameter to optimize through the gridsearch 359 

was the alpha value, which is a regularization parameter (L2 regularization); alpha value was 360 

comprised between 0.01 and 100 (Table 2).  All the architecture of DNN and theire 361 

hyperparameters retained through the girdsearch for the models 1 to 8 are listed in Table 2. 362 

Hence, the number of layers are comprised between 1 to 5, two activation functions among 363 

three were used (ReLu and tanh) and the logisitic function was never retained by the 364 

gridsearch, two solver (Adam and SGD) among three were used. Finally, despite the 365 

amplitude values of alpha, two alpha values were retained: 1 and 10.  366 

 367 

4. Conclusions 368 

We compared a literature review approach to a no a priori approach in order to select, by 369 

diverse strategies, the best set of molecular descriptors among 1545 MD in order to predict, 370 

through a QSRR model, the RPLC retention times of 792 pesticides. The literature review 371 



approach yielded the best results when DNN was used as the ML algorithm, with an R² of 372 

0.82 and an RMSE of 0.67 min (Model 1) on the validation set. However, it could be useful in 373 

future resaerch to test some other no a priori selection strategies in order to determine new 374 

MD datasets and also to consider reducing the number of MD with the goal to simplify the 375 

models while obtaining good predictions. 376 

 377 
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Figure 1 QSRR model development and evaluation of performances  

843 pesticides and their RTs (Wang et al., 2019) 

Literature review  

Calculation of 1843 molecular descriptors  (by SCBDD, ACD and TEST) 

           Standardization 

& Tuning the hyper parameters (cv = 5)  

DNN 

Performances 

R² training set - RMSE training set 

R² test set - RMSE test set 

Dataset  

Validation set 

(n = 198) 

No a priori ideas on which molecular descriptors to select 

16 molecular descriptors 

Training set (n = 445) & Test set (n = 148) 

Optimized QSRR  

applied to  

Performances 

R² validation set - RMSE validation 

Feature importance analysis 

Data set cleaning 

7 strategies to select 16 MD: 

Lasso, Pearson, RFE, PCA1 to PCA4 



Table 1 QSRR models selected from the literature review  

References 
Type of 

contaminant 

Number of 

contaminants  

MDs 

selected 

Best 

machine 

learning 

algorithm

s used 

RT max 

measured 

(min) 

R² 

test 

set 

RMSE 

test set 

(min) 

Percentage 

of error 

Aalizadeh et 

al., 2019 

Emerging 

contaminants  
1830 

LogDa, CIC1b, SeigZc, 

RDF020pd, AlogPe 
SVM 14.4 0.88 1.04 7% 

McEachran 

et al., 2018 

Environmental 

contaminants 
97 

LogPf, LogD, molecular 

weight, molecular 

volume, polar surface 

areag, molar 

refractivityh, H_donorsi, 

H_acceptorsj 

ACD 

/ChromG

enius® 

40.8 0.92 2.66 6.5% 

Bade et al., 

2015 

Emerging 

contaminants  

 

544 

nDBk, nTBl, nCm, nOn, 

nR04-nR09o, UIp, Hyq, 

MlogPr,  AlogP, logP, 

logD 

MLP 16.5 0.91 0.89 5.4% 

Munro et al., 

2015 
Pharmaceuticals 166 

nDB or nTB, nC or nO, 

nR04-nR09, UI, Hy, 

MlogP,  AlogP , LogD, 

nBnzs, pKat  

GRNN 23.2 0.88 1.39 5.9% 

Noreldeen et 

al., 2018 
Veterinary drugs 95 

ACDlogPu, ALOGP, 

ALOGP2v, Hy, Ui, ibw, 

BEHp1x, 

BEHp2y,GATS1mz, 

GATS2ma2. 

MLR 9.3 0.95 0.62 6.6% 

Bride et al., 

in press 

Environmental 

contaminants  
274 

logD, DBEa3, nO, nC, 

nH, molecular weight, 

H_donors, logSwa4 

MLR 14.7 0.76 1.36 9.2% 

Yang et al., 

2020 
Pharmaceuticals 133 

XlogPa5, BCUTp.1ha6, 

AATS1ia7, AATS3ia8, 

GATS1ea9, ALogP, 

AATSC0pa10, 

ETA_EtaP_Ba11, 

AATS4ia12, AATS5ia13 

MLR 15.0 0.63 1.42 9.4% 

- a: logD is the measure of hydrophobicity for the ionizable compounds 

- b: CIC1 is the Complementary Information Content index (neighborhood symmetry) 

- c: SeigZ is the eigenvalue sum from a Z weighted distance matrix of a Hydrogen-depleted Molecular Graph 

- d: RDF020p is radial distribution function weighted by atomic polarizabilities, 

- e: AlogP is logP estimated by the Ghose–Crippen method.  

- f: LogP or LogKow, LogP is equal to the logarithm of the ratio of the concentrations of the test substance in octanol and water.  

This value allows apprehending the hydrophilic or hydrophobic (lipophilic) character of a molecule.  

- g: defined as the surface sum over all polar atoms or molecules, primarily oxygen and nitrogen, also including their attached 

hydrogen atoms.  

- h: is a measure of the total polarizability of a mole of a substance 



- i: the number of H-bond donor as descriptors of the H-bonding property  

- j: the number of H-bond acceptor groups as descriptors of the H-bonding property  

- k: number of double bonds 

- l: number of triple bonds 

- m: number of Carbon 

- n: number of Oxygen  

- o: the number of 4–9 membered rings  

- p: unsaturation index  

- q: hydrophilic factor  

- r: Moriguchi logP 

- s: number of benzen groups 

- t: equilibrium constant of the dissociation reaction of an acid species in acid-base reactions 

- u: ACDlogPa molecular properties octanol-water partitioning coefficients 

- v: ALOGP2 molecular properties Ghose-Crippen octanol water coefficient squared  

- w: Ib information indices information bond index.  

- x: BEHp1 burden eigenvalue descriptors highest eigenvalue n. 1 of burden matrix/weighted by atomic polarizabilities. 

- y: BEHp2 burden eigenvalue descriptors highest eigenvalue n. 2 of burden matrix/weighted by atomic polarizabilities.  

- z: GATS1mb 2D autocorrelation descriptors Geary autocorrelation-lag 1/weighted by atomic masses.  

- a2: GATS2mb 2D autocorrelation descriptors Geary autocorrelation-lag 2/weighted by atomic masses. 

- a3: the double-bond equivalent descriptor is the number of unsaturations present in a organic molecule 

- a4: the water solubility described by the logarithm of water solubility in mg/L at 25°C. 

- a5: XlogP is the constitutional descriptors-describe hydrophobic/hydrophilic properties 

- a6: BCUTp.1h is the BCUT descriptor/nlow highest polarizability weighted BCUTS 

- a7: AATS1i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 1 / weighted by first ionization potential 

- a8: AATS3i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 3 / weighted by first ionization potential 

- a9: GATS1e is the autocorrelation descriptor/Geary autocorrelation - lag 1 / weighted by Sanderson electronegativities 

- a10: AATSC0p is the autocorrelation descriptor/ average centered Broto-Moreau autocorrelation - lag 0 / weighted by first 

ionization potential 

- a11: ETA_EtaP_B is the extended topochemical atom descriptor/branching index EtaB relative to molecular size 

- a12: AATS4i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 4 / weighted by first ionization 

potential,  

- a13: AATS5i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 5 / weighted by first ionization 

potential 

 



Table 2 Performances of QSRR models applied to the pesticide dataset  

   Internal set 
Validation set 

DNN Optimized  

   Training set Test set      

N° 

Model 

Number of 

molecular 

descriptors  

Name of the 

Model  
R²  RMSE  R²  RMSE  R²  RMSE 

Percentage 

of error 

Number of 

neurons per 

hidden layers 

Activation 

function 
Solver Alpha  

1 16 Bade-MLP 0.95 0.43 0.90 0.63 0.82 0.67 6% 16-16-16-16-16 ReLu Adam 10 

2 
16 

Lasso-MLP 0.60 1.19 0.50 1.27 0.49 1.36 12% 16 tanh SGD 1 

3 
16 Pearson-

MLP 
0.79 0.86 0.79 0.83 0.78 0.88 8% 16-16 ReLu SGD 10 

4 
16 

RFE-MLP 0.69 1.04 0.60 1.15 0.63 1.16 10% 16-16-16-16-16 ReLu SGD 10 

5 
16 

PCA1-MLP 0.75 0.94 0.61 1.12 0.64 1.14 10% 16 tanh Adam 1 

6 
16 

PCA2-MLP 0.42 1.44 0.34 1.47 0.38 1.50 13% 16 tanh Adam 1 

7 
16 

PCA3-MLP 0.61 1.18 0.53 1.24 0.56 1.26 11% 16-16-16 ReLu SGD 10 

8 16 PCA4-MLP 0.82 0.79 0.75 0.91 0.76 0.93 8% 16-16-16-16 ReLu SGD 10 

 




