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Abstract: In wildlife, epidemiological data are often collected using cross-sectional surveys 30 

and antibody tests, and seroprevalence is the most common measure used to monitor the 31 

transmission dynamics of infectious diseases. On the contrary, the force of infection, a 32 

measure of transmission intensity that can help understand epidemiological dynamics and 33 

monitor management interventions, remains rarely used. The force of infection can be 34 

derived from age-stratified cross-sectional serological data, or from longitudinal data 35 

(although less frequently available in wildlife populations). Here, we combined 36 

seroprevalence and capture-mark-recapture data to estimate the force of infection of 37 

brucellosis in an Alpine ibex (Capra ibex) population followed from 2012 to 2018. Because 38 

the seroprevalence of brucellosis was 38% in this population in 2012, managers conducted 39 

two culling operations in 2013 and 2015, as well as captures every year since 2012, where 40 

seronegative individuals were marked and released, and seropositive individuals were 41 

removed. We obtained two estimates of the force of infection and its changes across time, by 42 

fitting (i) a catalytic model to age-seroprevalence data obtained from unmarked animals 43 

(cross-sectional), and (ii) a survival model to event time data obtained from recaptures of 44 

marked animals (longitudinal). Using both types of data allowed us to make robust inference 45 

about the temporal dynamics of the force of infection: indeed, there was evidence for a 46 

decrease in the force of infection between mid-2014 and late 2015 in both datasets. The force 47 

of infection was estimated to be reduced from 0.115 year-1 [0.074–0.160] to 0.016 year-1 48 

[0.001–0.057]. These results confirm that transmission intensity decreased during the study 49 

period, probably due to management interventions and natural changes in infection dynamics. 50 

Estimating the force of infection could therefore be a valuable complement to classical 51 

seroprevalence analyses to monitor the dynamics of wildlife diseases, especially in the 52 

context of ongoing disease management interventions. 53 

 54 
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INTRODUCTION 57 

Recent outbreaks of wildlife diseases in Europe such as Chronic Wasting Disease or African 58 

Swine Fever have brought to light the need for effective, science-based disease management 59 

strategies in the wild (Mysterud and Rolandsen, 2018; Vicente et al., 2019). Depending on 60 

the host species and infectious disease considered, interventions such as culling, fencing, test-61 

and-remove or vaccination have been implemented with various success in wild populations 62 

(le Roex et al., 2015; McDonald et al., 2008; Müller et al., 2015; Mysterud and Rolandsen, 63 

2019). The first step in the choice of an appropriate management intervention is a sound 64 

evaluation of the epidemiological situation, in order to optimize strategies before any action 65 

is implemented (Artois et al., 2009). Then, ongoing management interventions should be 66 

accompanied by a close monitoring of both the infection and the population dynamics to 67 

assess their effectiveness (Joseph et al., 2013; Vicente et al., 2019). However, the 68 

management of wildlife diseases is often hampered by our limited knowledge of population 69 

and infection dynamics, and management actions are often implemented before a full picture 70 

of the situation has been drawn. It would therefore be desirable to extract the most 71 

information out of the available data to inform management decisions. 72 

Incidence, i.e. the number of new infections in a population at risk over a given period of 73 

time, and prevalence, the proportion of infected individuals at a given point in time or over a 74 

certain period of time, are two common measures used to describe epidemiological dynamics 75 

of infections (Keiding, 1991). In wildlife populations, the collection of epidemiological data 76 

is often performed using cross-sectional surveys and serological (antibody) tests (Gilbert et 77 

al., 2013). Therefore, the prevalence of individuals positive to antibody tests (called 78 

seroprevalence) is often the only measure used to monitor the dynamics of infections in 79 

managed populations (Gilbert et al., 2013). However, the variation of seroprevalence over 80 

time provides only limited information on transmission dynamics, as the presence of 81 
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antibodies does not necessarily reflect active infections or inform on the timing of infection, 82 

especially in long-lived species. Unfortunately, incidence is rarely available for wildlife 83 

populations, because it requires longitudinal samplings of individual animals which are often 84 

logistically difficult (Gilbert et al., 2013). The force of infection (FOI), on the other hand, is a 85 

measure of transmission intensity related to incidence that can be obtained from age-86 

seroprevalence data collected during cross-sectional surveys (Heisey et al., 2006) and that 87 

can help planning and optimizing management interventions (Lewis et al., 2014). 88 

The FOI is the rate at which susceptible individuals become infected, and combines the 89 

contact rate, the probability of transmission given contact, and the number of infectious 90 

individuals in the population (Begon et al., 2002). Classical methods for estimating the FOI 91 

are based on the fact that the proportion of individuals who have ever been infected increases 92 

with age as a result of increased time of exposure to the infection (Heisey et al., 2006; Hens 93 

et al., 2010). These methods, also described as catalytic models (Muench, 1934), have been 94 

widely used for life-long immune infections in humans (Farrington, 1990; Keiding, 1991; 95 

Papoz et al., 1986). A common assumption in these models is that the FOI is constant over 96 

time, or at least constant on average (Hens et al., 2010), which is often not the case for 97 

diseases that are emerging or under management. Nonetheless, several studies were able to 98 

estimate time-varying FOI in humans (Katzelnick et al., 2018) and animals (Courtejoie et al., 99 

2018). Estimating the FOI from age-seroprevalence data also has the additional advantage of 100 

assessing for infection-related mortality (Heisey et al., 2006; Reynolds et al., 2019). 101 

The aim of this study was to estimate the FOI of brucellosis (Brucella melitensis) in Alpine 102 

ibex (Capra ibex) in the Bargy Massif (French Alps). This is the first reported example of 103 

self-sustained brucellosis infection in European wild-living ungulates, with a seroprevalence 104 

level as high as 38% at the beginning of monitoring in 2012-2013 (Garin-Bastuji et al., 2014; 105 

Hars et al., 2013). As France has been declared officially free of Brucella melitensis and 106 



 7

Brucella abortus in domestic ruminants since 2005 (Perrin et al., 2016a, 2016b), the 107 

persistence of B. melitensis in a wildlife population raises serious public health and economic 108 

concerns. This led the French authorities to undertake several management interventions 109 

since the discovery of the outbreak in 2012 (Lambert et al., 2018; Marchand et al., 2017). 110 

Among these, two massive culling operations were carried out in autumn 2013-spring 2014 111 

(n=251 individuals culled, estimated population size before culling: 567, 95% CI [487-660]) 112 

and in autumn 2015 (n=70 individuals culled, estimated population size before culling: 344, 113 

95% CI [290-421]). In parallel, the population was monitored by Capture-Mark-Recapture 114 

(CMR) to collect demographic and epidemiological data every year. During captures (n=387 115 

between 2012 and 2018), a test-and-remove program was implemented where seropositive 116 

individuals were removed (n=119), while seronegative individuals were marked and released. 117 

The 2015 test-and-remove campaign was particularly intense with 38 individuals removed 118 

among the 125 captured. 119 

As a consequence, cross-sectional data are available from unmarked animals, whereas the 120 

follow up of marked animals can be seen as data of a cohort study of seronegative animals. 121 

Contrary to the seroprevalence (Calenge et al., 2021; Marchand et al., 2017), the FOI has 122 

never been studied in the population before, although Calenge et al., 2021 estimated the FOI 123 

exerted on susceptible marked animals only, and assuming that it was proportional to the 124 

proportion of the total ibex population being seropositive, unmarked and actively infected. 125 

Therefore, we were interested in estimating the FOI from the available datasets to get a 126 

complementary picture of the epidemiological dynamics in the study population. 127 

In ruminants, brucellosis is considered to produce lifelong infections, in particular in goats 128 

(European Commission, 2001; Schlafer and Miller, 2007), a species closely related to ibex. 129 

Brucella infection induces both humoral and cellular immune responses (Carvalho Neta et 130 

al., 2010; European Commission, 2001), which remains detectable over long periods of time 131 
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(Godfroid et al., 2010). The characteristics of brucellosis are therefore compatible with the 132 

use of catalytic models. 133 

The presence of antibodies detected by serologic tests is used to detect previous exposure to 134 

Brucella (Godfroid et al., 2010). However, a potential issue with using antibodies as a proxy 135 

of past exposure is that infected individuals could be missed if antibody levels wane over 136 

time and decrease below detectable levels (Benavides et al., 2017). In elk (Cervus 137 

canadensis) infected with B. abortus, evidence suggest lifelong protective immunity but a 138 

progressive antibody loss after some years, which explains the decline in seroprevalence in 139 

older individuals (Benavides et al., 2017). In bison (Bison bison), a similar decline in 140 

seroprevalence in older individuals is observed (Treanor et al., 2011). This could be 141 

explained by the finding that active infections, which can be reactivated on favourable 142 

occasions such as oestrus or pregnancy (European Commission, 2001; Schlafer and Miller, 143 

2007) and are associated with increased antibody levels (Durán-Ferrer et al., 2004), decreases 144 

with age in seropositive bison (Treanor et al., 2011). 145 

In ibex, similar patterns have been found with a decline of seroprevalence in older individuals 146 

(Marchand et al., 2017) and a decrease of the probability of active infection with age 147 

(Lambert et al., 2018). Therefore, a partial antibody loss cannot be excluded; however, in the 148 

absence of relevant data to estimate this process, we assumed life-long infection and 149 

seropositivity in our study. 150 

Infection-related mortality is another mechanism that could explain a decrease of 151 

seroprevalence with age (Benavides et al., 2017; Heisey et al., 2006). Therefore, one aim of 152 

the present study was to look for evidence of infection-related mortality, which can be 153 

estimated at the same time as the FOI (Heisey et al., 2006; Reynolds et al., 2019). Although 154 

there is currently no evidence for brucellosis-related mortality in the Alpine ibex population 155 

of the Bargy massif, it remains a possibility, e.g. because of brucellosis-related lesions such 156 
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as arthritis (Freycon et al., 2017). In other wild species, evidence for brucellosis-related 157 

mortality were found in moose (Alces alces) and African buffalo (Syncerus caffer) (Forbes et 158 

al., 1996; Gorsich et al., 2015), but not in bison or elk (Benavides et al., 2017; Fuller et al., 159 

2007; Joly and Messier, 2005). 160 

Our study also aimed at evaluating temporal changes in the FOI between October 2012 and 161 

June 2018. The seroprevalence did not change between 2012 and 2015 (Marchand et al., 162 

2017), when management interventions were dominated by massive culling operations. 163 

However, a recent study demonstrated that it then decreased between 2015 and 2016, before 164 

getting roughly stable from 2016 to 2018 (Calenge et al., 2021). Management interventions in 165 

this second period were mainly based on test-and-remove during captures, especially in 2015 166 

when 125 captures were achieved, followed by around 30-50 captures each following year. 167 

Given this information, we hypothesized that the FOI also decreased between 2015 and 2016, 168 

at the same time as the seroprevalence and following changes in the management 169 

interventions. Alternatively, if individuals remain immune lifelong after infection, test-and-170 

remove of seropositive individuals could also increase the FOI by specifically removing 171 

immune individuals (Ebinger et al., 2011). We also hypothesized that the FOI could change 172 

in 2012, as there was no management in the study population before brucellosis was detected. 173 

We therefore expected three periods, one before 2012, and two others between 2012 and 174 

2018. 175 

 176 

MATERIAL AND METHODS 177 

Population management and monitoring 178 

The study area, ibex population and discovery of B. melitensis infection have been described 179 

previously (ANSES, 2015; Garin-Bastuji et al., 2014; Hars et al., 2013; Mailles et al., 2012; 180 

Marchand et al., 2017; Mick et al., 2014). 181 
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The estimates of the population size were: 567 individuals (95% Confidence Interval: [487-182 

660]) in 2013, 310 [275-352] in 2014, 347 [290-421] in 2015, 272 [241-312] in 2016, 291 183 

[262-327] in 2017 and 374 [326-435] in 2018 (Calenge et al., 2021; Marchand et al., 2017). 184 

Between the beginning of the monitoring by CMR in October 2012 and summer 2018 (see 185 

Figure 1 for the timing of captures and recaptures), a total of 387 captures and recaptures 186 

have been performed (2012: 24, 2013: 57, 2014: 71, 2015: 125, 2016: 35, 2017: 27 and 2018: 187 

48 – Lambert et al., 2020, 2018; Marchand et al., 2017). For each individual, information on 188 

age (in years, by counting horn growth annuli, Michallet et al., 1988), sex, date of sampling 189 

and spatial location of capture were systematically recorded. Captured animals were blood-190 

sampled by trained technical staff and serological tests were performed on serum samples. 191 

The serological antibody tests were performed according to requirements of the European 192 

Union for diagnosis of brucellosis in small ruminants and following standards of the World 193 

Organization of Animal Health (OIE). Four serological tests were performed in parallel in 194 

laboratory conditions: the Rose Bengal Test, the Complement Fixation Test, and the indirect 195 

and the competitive Enzyme Linked ImmunoSorbent Assays. Individuals were considered as 196 

seropositive when at least two of the tests were positive. Sensitivities and specificities of 197 

these four tests for the diagnosis of B. melitensis in small domestic ruminants are generally 198 

high: 75-100% and 97.6-100%, respectively (Blasco et al., 1994b, 1994a; Ferreira et al., 199 

2003; Nielsen et al., 2004). Although they remain unknown in ibex, the sensitivity and 200 

specificity of the diagnosis protocol in ibex are considered high because of the use of 201 

multiple tests in parallel and few cases of inconsistent results (ANSES, 2015). As part of a 202 

test-and-remove program, captured individuals were either euthanized when they were 203 

seropositive, or marked and released if they were seronegative at the time of sampling. Since 204 

2015, the decision to euthanize ibex was based on the results of a rapid Lateral Flow 205 

Immune-chromatographic Assay (LFIA), available for direct use in the field before 206 
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confirmation by the other tests in the laboratory. The LFIA had been validated on ibex samples 207 

by the EU/OIE/FAO and National reference laboratory for animal brucellosis, showing very good 208 

correlation with the four laboratory tests (ANSES, 2014; Corde et al., 2014). 209 

In addition to CMR monitoring and test-and-remove operations, culling operations were also 210 

implemented as part of the disease management strategy conducted by the French Authorities 211 

(Figure 1). In spring 2013, four individuals showing clinical signs (e.g., lameness or presence 212 

of visible gross lesions of the joints or the testes) were culled. In autumn 2013 and spring 213 

2014, 233 and 18 individuals estimated to be older than 5 years were culled, based on the 214 

observation that seroprevalence was significantly higher for this age class (Hars et al., 2013). 215 

Non-selective culling of individuals that were never captured was also performed in autumn 216 

2015 (n=70), autumn 2017 (n=5) and spring 2018 (n=5). The same antibody tests as in 217 

captured animals were performed on culled ones whenever blood samples of good quality 218 

were available. Among the 42 culled individuals for which results of serological tests were 219 

available, the serological status of culled animals was based on a single LFIA test in a few 220 

cases (n=12). This was also the case for one captured animal in 2015, and two marked 221 

animals recaptured (all three with negative test results). 222 

 223 

Cross-sectional and longitudinal datasets 224 

In total, cross-sectional serological data were available from 363 unmarked individuals tested 225 

between 2012 and 2018 (320 captured individuals, one found-dead individual and 42 culled 226 

individuals– 129 seropositive and 234 seronegative results; Table S1). The first dataset we 227 

used was therefore age-seroprevalence data from these unmarked individuals (Figure 2A, 228 

Table S1 and Figure S1). 229 

Among the seronegative individuals that were marked and released, 50 were recaptured at 230 

least once during the study period and were tested again for antibodies against brucellosis. 231 
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The second dataset we used was therefore the follow up time (in days) between the first 232 

capture and the last recapture of marked animals. Because these animals were seronegative at 233 

the first capture, they either remained seronegative (n=46) or became seropositive in the 234 

interval (n=4 – Figure 2B and Figure S1). This type of data is also called “event time” data, 235 

where the event here would be the seroconversion from negative to positive. Individuals that 236 

seroconverted are “interval censored”, i.e., the event of interest occurred between the last 237 

negative test and the positive test, but the exact time is not known (Kleinbaum and Klein, 238 

2005). Conversely, individuals that remained seronegative at the last recapture are “right 239 

censored”, i.e., the event of interest did not occur yet and may or may not occur in the future 240 

(Kleinbaum and Klein, 2005). 241 

The longitudinal event time dataset covered the period 2012-2018, from first captures to last 242 

recaptures (Figure 2B), while the cross-sectional age-seroprevalence dataset covered the 243 

period from 1998 to 2018 (see below and Figure S1). The sample size for the longitudinal 244 

dataset (n=50) was also much smaller than for the cross-sectional dataset (n=363), because in 245 

the study population, most captures targeted unmarked individuals, in an attempt to test new 246 

individuals and maximise chances to remove infected individuals (Calenge et al., 2021). 247 

Indeed, marked ibex have more chances to be seronegative, as they already were during their 248 

last capture in a more or less recent past (Calenge et al., 2021). 249 

 250 

Estimating the FOI using cross-sectional age-seroprevalence data 251 

The FOI �(�) represents the rate at which susceptible individuals become infected per unit of 252 

time, at time t (Vynnycky and White, 2010), and can be calculated using the equation: �(�) =253 

��
�(	)


(	)
, where � is the contact rate, � is the probability that the contact leads to infection, and 254 

�(	)


(	)
 is the proportion of infectious individuals in the population at time � (Begon et al., 2002). 255 
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The FOI changes over time, although its average value remains unchanged over time in 256 

endemic situations. 257 

If we were to follow over time a cohort of individuals born the same year, we would observe 258 

that, as the cohort ages, the proportion of individuals who have ever been infected increases 259 

(in our case, the proportion of seropositive individuals as we are using seropositivity as a 260 

proxy of past infection). A cross-sectional sample would produce a similar pattern, as animals 261 

would be of different ages and therefore would have experienced various exposure times 262 

(Heisey et al., 2006). This has led to the development of the ‘catalytic model’ (Muench, 263 

1934), that can be written as: 264 

�(�) = 1 − ���� 265 

where �(�) is the proportion ever infected at age � (in years), and � is the average FOI (in 266 

years-1). The main assumptions are that the average FOI � is independent of age and year, 267 

that infection is lifelong or confers lifelong immunity, that all individuals are born without 268 

infection, and that susceptible and infected animals have the same mortality rate (i.e., no 269 

infection-related mortality experienced by infected animals). 270 

When antibodies remain detectable lifelong, this model can be fitted to observed age-271 

seroprevalence data to estimate the average FOI. However, the limitations related to the 272 

model assumptions led to new developments over the years, dealing for instance with age-273 

dependent FOI (see Hens et al., 2010 for a review). 274 

In this study, we used the general FOI model developed by Heisey et al. (2006) that allows 275 

for the existence of infection-related mortality in infected animals and the influence of 276 

covariates ��, … , �� on the FOI �, leading to the new equation: 277 

�(�) =
1 − ��(���)�

1 −
�
� ��(���)�

 278 
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where �(�) is the proportion of seropositive at age �, � is the infection-related mortality 279 

(infection being brucellosis in our case) and � is the average FOI with � = �� ������⋯��!�!, 280 

where �� is the baseline FOI which is constant over age and time. Note that when � = 0, the 281 

equation simplifies to Muench’s model: �(�) = 1 − ����. The model still assumes that all 282 

animals are born without infection, but can immediately leave this state and become positive 283 

(Heisey et al., 2006). 284 

We tested for the existence of infection-related mortality by fitting this general FOI model to 285 

our age-seroprevalence data using a maximum likelihood approach and the R function 286 

currentstatus.1 provided in Heisey et al. (2006). We took into account the effects of sex and 287 

socio-spatial unit, which were demonstrated to play a major role in explaining variation in 288 

brucellosis seroprevalence in the study ibex population (Lambert et al., 2020; Marchand et 289 

al., 2017). Indeed, it has been highlighted that females transmit the infection in ~90% of 290 

cases (Lambert et al., 2020) and that they are spatially structured in five subpopulations with 291 

contrasted seroprevalence levels, the units at the centre of the massif (“core area”) having the 292 

highest seroprevalence levels (Marchand et al., 2017). 293 

We also tested the assumption that � is independent of age. First, we added age (as a 294 

quantitative variable) among the covariates (Table 1), even though, in this case, the function 295 

for �(�) would be incorrect, as it was obtained under the hypothesis that �� was independent 296 

of age. However, this step is useful as a diagnostic tool, as if age or a function of age as 297 

covariate improves the model fit, it means that this assumption should be revised and 298 

functions other than constant with age should be explored for the baseline FOI (Heisey et al., 299 

2006). Second, we used the piecewise constant hazards approach developed by Heisey et al. 300 

(2006) to enable the use of age-varying models for the baseline FOI �� such as the Weibull, 301 

the Gompertz or the log-logistic models (Table S2). 302 
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Similarly, we added year of sampling (as a categorical variable) among the variables 303 

(Table 1), to test if the time-independence assumption holds (Heisey et al., 2006). 304 

For each type of model (constant FOI, diagnostic model with covariate year – YEAR, 305 

diagnostic model with covariate age – AGE, diagnostic model with covariate quadratic age – 306 

AGE², diagnostic model with both AGE or AGE² and YEAR, Weibull, Log-logistic, Pareto, 307 

Gompertz), we fitted submodels including infection-related mortality (�) or not, taking into 308 

account socio-spatial unit (UNIT) and sex (SEX) (Table 1 and Table S2). For each model, the 309 

number of parameters (degrees of freedom), the log-likelihood, the Akaike Information 310 

Criterion corrected for small sample sizes (AICc), and the difference between the AICc and 311 

the lowest AICc value (ΔAICc) were computed. The Akaike Weights, which are relative 312 

model likelihoods normalized over the likelihoods of all possible submodels, were computed 313 

using the function aictabCustom of the AICcmodavg R package (Mazerolle, 2019). The 314 

Akaike weight can be regarded as the conditional probability given the data of being the best 315 

model among the set of possible submodels (Wagenmakers and Farrell, 2004). We selected a 316 

set of models for which the ΔAICc was below two (Burnham et al., 2011; Burnham and 317 

Anderson, 2002). 318 

Given that the selected models included the covariate year, we further explored the existence 319 

of temporal variation in the annual FOI by assuming a constant FOI with age but estimating 320 

different baseline FOI �� for one, two or three periods of time to test our hypothesis. We 321 

therefore assumed that the FOI could be considered as time-independent on average for 322 

several years. This remains an approximation, but it allowed us to estimate temporal changes 323 

in the FOI while staying in the framework of the general FOI model. 324 

Because births in ibex take place between the end of May and the beginning of July, we 325 

considered FOI of year n to start from July 1st year n-1 up to July 1st year n. Based on age and 326 

years of sampling, individuals were born between 1998 and 2017. Because the monitoring 327 
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and management interventions started in 2012, the years 1998-2012 were always included in 328 

the first period. We compared all possible models with two or three periods, using all 329 

possible threshold years or couple of threshold years between 2012 and 2018 to obtain 330 

different periods. 331 

For each explanatory variable of the final model, results were expressed as Hazard Ratios 332 

(HR). The hazard function is expressed as � = ��������⋯��!�!. For a single qualitative 333 

covariate � that is either present (� = 1) or absent (� = 0), the hazard (FOI) is � = ���� for 334 

� = 1, and � = �� for � = 0. Therefore, the hazard ratio is #$ = ���� ��⁄ = ��. Similarly, 335 

hazard ratios can be expressed for qualitative covariates with multiple categories, and for an 336 

increase in one unit of a quantitative covariate. Hazard ratios have a similar interpretation as 337 

odds ratios (Dohoo et al., 2009). Profile likelihood 95% confidence interval around each 338 

estimated coefficient were computed (Therneau and Grambsch, 2000). 339 

 340 

Estimating the FOI using longitudinal event time data 341 

As we were interested in the time until the occurrence of infection (“survival time”), we 342 

analysed our longitudinal event time dataset using survival models. We note & the random 343 

variable representing the time between the first capture and the infection event, in days. The 344 

survival function is the probability that infection has not yet occurred by time � (follow up 345 

time): '()*(�) = +(& ≥ �). Note that in our data, animals were captured for the first time at 346 

different dates, meaning that the follow up time had different origins and therefore was not 347 

equivalent to the calendar time (Figure S1). 348 

The survival function can be related to the hazard function �(�), i.e., the rate at which the 349 

event occurs per unit time, at time t, using the following equation (Kleinbaum and Klein, 350 

2005): 351 

'()*(�) = �� - �(.) /.
0

1  352 
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In our case, the event of interest is infection, and therefore the hazard function is the FOI. 353 

Note that if we assume a constant hazard risk (FOI) with follow up time, the hazard function 354 

is �(�) = �, and the corresponding survival function is '()*(�) = ���	 (exponential model). 355 

We tested the assumption that the hazard function is independent of age and calendar time, 356 

using the exponential model from the function flexsurvreg of the flexsurv R package 357 

(Jackson, 2016). We tested for the effects of age at last recapture (as a continuous variable, 358 

calculated as the age at first capture incremented by the number of years between first capture 359 

and last recapture) and year of recapture (as a categorical variable). Because of small sample 360 

sizes, we had to group years 2014 and 2015 on the one hand and 2016 to 2018 on the other 361 

hand. We were not able to take into account the effects of sex and socio-spatial unit because 362 

of small sample sizes. 363 

Given the results of the exponential model, we also explored the existence of variations with 364 

calendar time, fitting models assuming two periods between 2012 and 2018 characterised by 365 

two different FOI (independent of age and follow up time – Figure 2B). We fitted models 366 

considering two periods, using all possible monthly threshold dates between November 2012 367 

and June 2018, and compared them to the model considering a constant FOI.  368 

 369 

RESULTS 370 

Force of infection estimated from cross-sectional age-seroprevalence data 371 

Among the twelve diagnostic models taking into account the effect of SEX and UNIT, all 372 

models with ΔAICc<2 included the variable year, which suggests that the assumption of a 373 

time-independent FOI is not appropriate (Table 1; see also parameter estimates in Table S3). 374 

Models 9, 11 and 12 also included an age effect (Table 1). However, the effect sizes of linear 375 

or quadratic age were small, and adding these effects to model 3 including the variable year 376 

did not significantly improve model fit (Likelihood Ratio Tests: p=0.10 and p=0.09, 377 
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respectively). For completeness, we fitted several models of age-varying FOI using a 378 

piecewise constant hazards approach (models 13-20, Table S2). None of these models had a 379 

better AICc than model 3, which does not support variation of the FOI with age. 380 

Two models (4 and 12) with ΔAICc<2 included infection-related mortality (Table 1). The 381 

effect sizes of the infection-related mortality in models 4 and 12 were small (Table S3), and 382 

adding infection-related mortality � to model 3 or to model 11 did not significantly improve 383 

model fit (Likelihood Ratio Test: p=0.13 and p=0.52, respectively). 384 

Given that all models with ΔAICc<2 included the variable year, we further explored the 385 

existence of temporal variation in the annual FOI by assuming a constant FOI with age and 386 

no infection-related mortality, but estimating different baseline FOI �� for one (as a reference 387 

for no temporal variation), two or three periods of time. 388 

The model with the lowest AICc (374.96; model 10 in Table S4) was obtained when 389 

considering three periods, with 2012 and 2015 as threshold years (Figure 3A and Table S4), 390 

and improved model fit compared to the model without temporal variation (AICc = 33.09, 391 

ΔAICc = 8.13 with model 10). Baseline FOI estimates and hazard ratios for the effects of 392 

SEX and UNIT are provided in Table S5: the FOI was highest in the second period, and 393 

lowest in the third period; it was higher for females than males, and for the socio-spatial units 394 

at the centre of the massif, where the seroprevalence levels are the highest. The average FOI 395 

over the whole population (from the same model with three periods but without effects of 396 

SEX and UNIT) was estimated to be 0.069 year-1 [0.046–0.097] for the period 1998-2012, 397 

0.115 year-1 [0.074–0.160] for the period 2012-2015 and 0.016 year-1 [0.001–0.057] for the 398 

period 2015-2018 (Figure 3B). A very similar model was obtained when considering three 399 

periods but with 2012 and 2014 as threshold years (Tables S4 and S5, Figure S2). 400 

 401 

Force of infection estimated from longitudinal event time data 402 
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Using the exponential model (constant baseline hazard) to fit our event time data collected on 403 

marked animals, we found no significant effect of the variable AGE (HRper year = 0.81 [0.54-404 

1.20], p=0.28), but a significant effect of the variable YEAR (HR2014-2015 vs 2016-2018 = 0.095 405 

[0.009-0.92], p=0.043). 406 

These results did not support variation of the FOI with age. However, given the significance 407 

of the variable YEAR, we further explored the existence of temporal variations in the FOI by 408 

fitting a model with two different periods on the calendar time, where individuals were 409 

submitted to different constant FOI before and after threshold dates. Among models 410 

considering all possible monthly threshold dates between November 2012 and June 2018, the 411 

best models (ΔAICc<2) were obtained when considering two periods with a threshold date 412 

between July 2014 and December 2015 (Figure 3C). The model with the lowest AICc was 413 

obtained when considering a threshold date in March 2015 (AICc = 30.72 – Figure 3C) and 414 

improved the model fit compared to the simple exponential model without temporal 415 

variations (AICc = 34.30, ΔAICc = 3.58). The FOI was estimated to be higher for the first 416 

period (0.086 year-1 [0.015–0.193]) than for the second period (0 [0–0.030] – Figure 3D). 417 

 418 

DISCUSSION 419 

The aim of this study was to estimate the FOI of brucellosis in the wild Alpine ibex 420 

population of the Bargy massif (France) between 2012 and 2018. This measure of 421 

transmission intensity could help assess changes in transmission dynamics after management 422 

interventions started in 2012, as a complement to existing seroprevalence studies (Calenge et 423 

al., 2021; Marchand et al., 2017). Two massive culling operations were implemented in the 424 

population in 2013 and 2015. In addition, test-and-remove operations were performed during 425 

captures every year since 2012, with particularly high number of captures in 2015. We used 426 

two different datasets: age-seroprevalence data obtained from culling or first captures 427 
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operations (n=363), and event time data, derived from recaptures of marked animals (n=50). 428 

In both datasets, the model selection process supported an effect of time on the FOI, and 429 

returned estimates supporting a potential decrease of the FOI between mid-2014 and late 430 

2015. The force of infection was estimated to be reduced from 0.115 year-1 [0.074–0.160] to 431 

0.016 year-1 [0.001–0.057] in the age-seroprevalence data. 432 

Longitudinal samplings are difficult to obtain in wild populations and are therefore often not 433 

available (Gilbert et al., 2013). In our case, data from recaptured animals were available, but 434 

the sample size remained relatively low (only four seropositive among 50 recaptured 435 

animals), leading to large confidence intervals in the estimates of the FOI (e.g. [0.015–0.193] 436 

year-1 for 2012-2015). Although a higher number of recaptures may have provided a more 437 

complete dataset, it would have had negative impact in terms of disease management. The 438 

total number of captures each year being constrained for logistical reasons, focusing captures 439 

on already marked animals would have led to less animals being captured for the first time, 440 

and thus less seropositive animals being removed from the population. When management 441 

actions and disease surveillance both rely on the same field actions, a compromise has to be 442 

found between both objectives that may lead to gather less relevant surveillance data. In such 443 

cases where longitudinal data are absent or scarce because of practical or management 444 

reasons, the derivation of the FOI from cross-sectional serological data, more frequently 445 

collected in wildlife, is a useful complementary approach to gain insights into the 446 

epidemiological dynamics as we illustrated in our study. 447 

 448 

Model assumptions and infection-related mortality 449 

In both FOI models of cross-sectional and longitudinal data, the main assumption is the 450 

independence of the FOI with age. We did not find any support for age-dependency in our 451 

datasets (Table 1). 452 
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Estimating the FOI from age-prevalence data also had the advantage of bringing insights on 453 

brucellosis-related mortality, for which we did not find strong evidence (Table 1). Our results 454 

did not detect brucellosis-induced mortality in ibex, similar to studies in bison (Fuller et al., 455 

2007; Joly and Messier, 2005) or elk (Benavides et al., 2017). 456 

We also postulated that the serological test has perfect sensitivity and specificity: due to the 457 

use of multiple serological assays, previous studies estimated the sensitivity of diagnosis 458 

protocol to be around 95%, with perfect specificity (expert assumption in ANSES, 2015; 459 

Lambert et al., 2020). Test failure thus does not appear to be a high source of bias, however, 460 

in the case of lower quality tests, other modelling approaches could be investigated (Bollaerts 461 

et al., 2012; Buzdugan et al., 2017). A few individuals in our datasets only had results from 462 

the rapid LFIA test used in the field (see Material and Methods). The analyses produced 463 

qualitatively and quantitatively similar results when using reduced datasets without these 464 

individuals (not shown). 465 

In a former study, seroprevalence was found to decrease in old individuals, especially in 466 

males (Marchand et al., 2017). It was hypothesized that this phenomenon could be explained 467 

either by a lower survival rates or by lower probabilities to test positive in older individuals 468 

infected by brucellosis (Marchand et al., 2017). We did not find strong evidence for 469 

infection-related mortality, but we cannot exclude a decrease of antibody levels under 470 

detectable levels as the animals age, which is difficult to reveal using seroprevalence data 471 

(Heisey et al., 2006) (but see Benavides et al., 2017). Indeed, antibody titres measured by the 472 

Complement Fixation Test appeared to decrease with age (Figure S3) (Lambert et al., 2018). 473 

However, as high Complement Fixation Test titres are associated with active infections 474 

(Durán-Ferrer et al., 2004), which are less often observed in old ibex (Lambert et al., 2018), 475 

this may not reflect the antibody levels measured by the other serological tests used in the 476 

study population. Unfortunately, the data for these other tests was not readily available. 477 
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Therefore, further studies investigating antibodies persistence with age or age-related 478 

variation in test performance is needed to firmly conclude about these results. Moreover, 479 

acquiring knowledge on antibody kinetics in ibex could have the additional advantage of 480 

developing alternative approaches that improve the derivation of the FOI by estimating the 481 

time since infection using individual data on antibody titres (Borremans et al., 2016; Pepin et 482 

al., 2017). 483 

Finally, we also assumed, as classically done in catalytic models, that all individuals are born 484 

without infection. In domestic ruminants, congenital transmission of brucellosis exists but is 485 

rare, i.e., in only ca. 5% of kids born from infectious mothers (FAO and WHO, 1986; 486 

Godfroid et al., 2013). This transmission route is also suspected in ibex (Lambert et al., 487 

2018), but is probably as uncommon as in domestic ruminants. Moreover, individuals 488 

congenitally infected seroconvert and become infectious only at the age of sexual maturity 489 

(Plommet et al., 1973). Therefore, we assumed that the effects would be negligible on our 490 

results. 491 

 492 

Temporal variation of the force of infection 493 

In Marchand et al. (2017), statistical analyses of seroprevalence data from 2012 to 2015 did 494 

not detect changes in seroprevalence before and after the mass culling of autumn 2013. Using 495 

a Bayesian approach to estimate seroprevalence, Calenge et al. (2021) found a strong 496 

decrease in the overall seroprevalence between 2015 and 2016. In the present study, both 497 

datasets suggest that the FOI decreased between mid-2014 and late 2015 (Figure 3), which 498 

could explain the seroprevalence drop also observed. Our results support a decrease in 499 

transmission during the study period, probably due to management interventions and natural 500 

changes in the infection dynamics. Quantitatively, seroprevalence was halved between 2015 501 
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and 2016 (Calenge et al., 2021), while FOI as estimated using age-seroprevalence data was 502 

divided by approximately ten at the same period (0.115 year-1 vs. 0.016 year-1). 503 

In the process of estimating the seroprevalence in marked animals, Calenge et al. (2021) also 504 

estimated the FOI exerted on marked females in the core area, assuming it was proportional 505 

to the proportion of seropositive unmarked ibex with an active infection among the 506 

population of females in the core area. This analysis showed a decrease between 2015 and 507 

2016, with estimates that were consistent with the values obtained with our longitudinal event 508 

time dataset where we did not make such assumptions on the relation between the FOI and 509 

active infections in the population (Calenge et al., 2021). Finally, an individual-based, 510 

stochastic SEIR mechanistic model, also showed a decrease in incidence between 2013 and 511 

2016 in the whole population, and a low increase of new cases between 2016 and 2018. 512 

However, this increase in new cases was associated with a similar increase of population size 513 

which could indicate a constant incidence rate (Lambert et al., 2020). Therefore, the temporal 514 

dynamics appear to be consistent between the different approaches. The approach developed 515 

here has the advantage of being much simpler than the mechanistic model, and of bringing 516 

complementary information to previous seroprevalence analyses which can inform 517 

management decisions. 518 

The FOI did not decrease between 2012 and mid-2014, even though the population size was 519 

halved due to massive culling operations in autumn 2013-spring 2014. On the contrary, our 520 

results showed that the FOI increased in 2012, which could be related to management 521 

interventions or undetermined natural changes in infection dynamics, such as abortion events 522 

that play a critical role in brucellosis transmission. We also demonstrated a decrease in the 523 

FOI in 2014 or 2015, which is probably related to management interventions. At the same 524 

time, test-and-remove during captures replaced massive culling as the main component of 525 

management strategies. However, our analyses cannot disentangle the effects of each 526 
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management intervention that were implemented between 2012 and 2015, and the intense 527 

test-and-remove operation of 2015 could have benefited from cumulative effects from the 528 

previous years. These hypothesis could be tested in the future using the stochastic SEIR 529 

mechanistic model developed in Lambert et al. (2020). 530 

Unfortunately, we could not test for differences in temporal variation in the FOI between 531 

socio-spatial units (interactions between calendar time and spatial unit), due to low sample 532 

sizes. In a context where the FOI increases, such interactions could help to identify hotspots 533 

of infection, i.e., spatial units where the FOI increases faster, or simply different course of 534 

epidemics in the different spatial units (Heisey et al., 2010). Conversely, in a context of 535 

decreasing FOI such as in our study, interactions between calendar time and spatial units 536 

could reveal socio-spatial units with the sharpest decrease of FOI, which could correspond to 537 

areas where the management interventions are the most effective. In particular, management 538 

interventions since 2016 have been targeted towards the socio-spatial units at the centre of 539 

the massif, where the seroprevalence levels (and the FOI as demonstrated here) are the 540 

highest. It would therefore be interesting in the future to see if the FOI decreased faster in 541 

those units, and to test whether the FOI keeps decreasing in the units with less management 542 

interventions. 543 

 544 

Force of infection in marked and unmarked animals 545 

Our study aimed to compare the FOI between marked and unmarked animals. Most captures 546 

targeted unmarked individuals to maximise chances to remove seropositive individuals 547 

(Calenge et al., 2021). As a result, only a small number of marked animals were recaptured 548 

and a few cases of seroconversion were observed, leading to high uncertainty around the 549 

estimates of the FOI from the longitudinal event time dataset. Despite this uncertainty, the 550 

estimates from both datasets are comparable in each period (2012-2015 and 2015-2018) and 551 
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support a potential decrease of the FOI of similar magnitude. These results indicate that the 552 

FOI is similar in susceptible individuals from both groups, and therefore that marked 553 

individuals have similar patterns of exposure as unmarked individuals. Assuming similar 554 

FOI, a unified framework, using marked and unmarked animals, could be then further 555 

investigated to gain in precision of FOI estimates, even with relatively small longitudinal 556 

sample sizes, and better evaluate the requested sampling size of the monitoring (Gamble et 557 

al., 2020). An integrated framework combining cross sectional and longitudinal capture-558 

recapture setups would also decrease the needed sample size in comparison with separate 559 

approaches (Gamble et al., 2020). It is worth noting that both our cross-sectional and 560 

longitudinal datasets are interval censored event time dataset: from birth to the positive test 561 

for the age-seroprevalence data or from negative to positive test for the longitudinal data. 562 

Therefore, future research could use both datasets in the same analyses, which will allow to 563 

increase the statistical power and to use more complex models of time-varying FOI. 564 

 565 

CONCLUSIONS 566 

In conclusion, using two distinct methods and datasets, our analyses revealed a decrease in 567 

the FOI between mid-2014 and late 2015, possibly as a result of the successive management 568 

operations implemented since 2012. Estimating the FOI can therefore provide valuable 569 

insights on the epidemiological dynamics, as a complement to classical seroprevalence 570 

analyses. This is especially the case in the context of ongoing disease management 571 

interventions in wildlife populations, where the FOI is expected to change. Insights on the 572 

effect of managing on transmission dynamics can be obtained using rather simple models as 573 

we did here, provided that there is no strong evidence that the basic assumptions are violated. 574 

Comparing two different sources of data, cross-sectional and cohort studies, with appropriate 575 

models may contribute to provide robust inference about the FOI. Nonetheless, it is possible 576 
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to derive FOI estimates from cross-sectional serological data only, which are the most 577 

commonly available in wild populations. 578 
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Table 1: Model selection table to analyse the age-seroprevalence data using a constant force 834 
of infection with age and time, and testing for the effect of infection-related mortality μ, year 835 
and age (linear or quadratic), taking into account the effect of sex and socio-spatial unit. 836 

N° Year Age Age2 2 Unit Sex DF LL AICc ΔAICc W 

11 +  +  + + 12 -176.91 378.73 0.00 0.20 

9 + +   + + 12 -176.99 378.89 0.16 0.19 

4 +   + + + 12 -177.16 379.24 0.50 0.16 

3 +    + + 11 -178.31 379.38 0.65 0.15 

12 +  + + + + 13 -176.71 380.48 1.75 0.09 

10 + +  + + + 13 -176.99 381.04 2.31 0.06 

7   +  + + 7 -183.68 381.69 2.96 0.05 

5  +   + + 7 -184.20 382.73 3.99 0.03 

2    + + + 7 -184.34 383.01 4.27 0.02 

1     + + 6 -185.42 383.09 4.35 0.02 

8   + + + + 8 -183.60 383.62 4.88 0.02 

6  +  + + + 8 -184.20 384.82 6.09 0.01 
For each model, the table gives the number of Degrees of Freedom (DF), the Log-Likelihood (LL), 837 
the Akaike Information Criterion corrected for small sample sizes (AICc), the difference between their 838 
AICc and the lowest AICc value (ΔAICc), and the Akaike Weights (W), which are relative model 839 
likelihoods normalized over the likelihoods of all possible submodels. The models with ΔAICc<2 are 840 
in bold. 841 
  842 
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Figure legends 843 
 844 
Figure 1: Timing of the monitoring and management operations during which ibex of 845 
the Bargy massif (France) were sampled for serological tests between 2012 and 2018. 846 
In green: months during which captures were performed; in yellow: months during which 847 
recaptures were performed; in blue: months during which culling operations were performed. 848 
The number of individuals captured, recaptured or culled is indicated for each operation. 849 
 850 
Figure 2: Serological datasets for brucellosis between 2012 and 2018 in the Bargy massif 851 
(France) 852 
(A) Age-seroprevalence data, for ibex culled or captured for the first time, with black points 853 
representing the observed seroprevalence for each age, with the size of the points 854 
proportional to the sample taken (n=363). (B) Distribution of the duration between the first 855 
capture (where the individuals were seronegative, marked and released) and the last 856 
recapture, where the ibex either tested seronegative, or converted to seropositive (the event of 857 
interest), for ibex that were recaptured at least once (n=50). (B) Dates of first capture and last 858 
recapture of marked individuals, for ibex that were recaptured at least once (n=50). The solid 859 
horizontal lines represent the life of marked animals between the date of their first capture, 860 
where they tested seronegative (white dots), and their last recapture, where they either tested 861 
seronegative or seropositive (black dots). The dashed vertical line represents a possible 862 
threshold date that separates the first period where individuals are exposed to a certain force 863 
of infection (FOI 1) from the second period where individuals are exposed to a different force 864 
of infection (FOI 2). 865 
 866 
Figure 3: Estimates of time-varying forces of infection. 867 
(A) AICc of the models considering different forces of infection for three periods on the 868 
calendar time for the cross-sectional age-seroprevalence dataset, comparing all possible pairs 869 
of threshold years between 2012 and 2017 to divide the 1998-2018 period into three. (C) 870 
AICc of the models considering different forces of infection for two periods on the calendar 871 
time for the longitudinal event time dataset, comparing all possible threshold months to 872 
divide the 2012-2018 period into two. In (A) and (C), the grey areas represents the AICc 873 
values where the difference between the AICc and the lowest AICc value (ΔAICc) were 874 
below two. (B) and (D) Estimates of the FOI (year-1) for the best model considering time-875 
varying forces of infection for the age-seroprevalence and the event time datasets, 876 
respectively, without effects of sex and unit. The lines represent the means, and the areas 877 
represent the 95% confidence intervals. The dashed vertical lines represent the threshold 878 
dates that separate the different periods corresponding to different forces of infection in the 879 
models with the lowest AICc values. 880 
  881 



 34

 882 
Figure 1  883 



 35

 884 
Figure 2 885 
  886 



 36

 887 

 888 
Figure 3 889 




