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Abstract

In 2016–2017, France experienced a devastating epidemic of highly pathogenic avian

influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We

analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-

based phylodynamic approach that combined viral genomic data (n = 196; one viral

genome per farm) and epidemiological data. In the process, we estimated viral migra-

tion rates between départements (French administrative regions) and the temporal

dynamics of the effective viral population size (Ne) in each département. Viral migra-

tion rates quantify viral spread between départements and Ne is a population genetic

measure of the epidemic size and, in turn, is indicative of thewithin-département trans-

mission intensity. We extended the phylodynamic analysis with a generalized linear

model to assess the impact ofmultiple factors—including large-scale preventive culling

and live-duck movement bans—on viral migration rates and Ne. We showed that the

large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced

the viral spread between départements. No relationship was found between the viral

spread and duckmovements between départements. The within-département transmis-

sion intensitywas found to beweakly associatedwith the intensity of duckmovements

within départements. Together, these results indicated that the virus spread in short

distances, either between adjacent départements or within départements. Results also

suggested that the restrictions on duck transport within départementsmight not have

stopped the viral spread completely. Overall, we demonstrated the usefulness of phy-

lodynamics in characterizing the dynamics of a HPAI epidemic and assessing control

measures. This method can be adapted to investigate other epidemics of fast-evolving

livestock pathogens.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.
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1 INTRODUCTION

During the winter of 2016, an epidemic of the highly pathogenic avian

influenza (HPAI) virus occurred in France. It resulted in 484 infected

poultry farms and approximately 7million culled birds (Guinat, Nicolas,

et al., 2018). It remains critically important to learn asmuch as possible

from this devastating epidemic, particularly as France once again expe-

rienced an HPAI outbreak starting in December 2020 (Adlhoch et al.,

2021; Vergne et al., 2021). The 2016–17 epidemic was caused by an

H5N8virus of the lineage2.3.4.4b (A/Gs/Gd/1/96 clade) ofAsianorigin

that was likely introduced in France by migratory birds (Briand et al.,

2021). The epidemic was largely concentrated in southwest France,

encompassing the Occitanie and the Nouvelle-Aquitaine régions (the

largest French territorial administrative division; Bronner et al., 2017).

The first suspicion in poultry was reported in a duck breeding farm

in the Tarn département (administrative division equivalent to county

or district) on 25 November 2016 and the infection was confirmed—

based on lab diagnosis—on 28 November (Figure 1). Subsequently, the

epidemic spreadwestwards (Guinat,Nicolas, et al., 2018), following the

westerly distribution of poultry farms within the region. The last case

of the epidemicwas reported on 23March 2017 (Guinat, Nicolas, et al.,

2018).

Twomajor outbreak responses, namely preventive culling and stop-

ping the transport of foie gras ducks between farms, were implemented

during the epidemic. Culling was implemented locally in infected

farms during the initial phase of the epidemic. However, these local

measures proved to be insufficient in curbing the rapid spread of the

virus. Consequently, there were three phases of large-scale culling.

On 4 January 2017, all duck farms located in 150 communes across

four départements, namely Gers, Landes, Pyrénées-Atlantiques and

Hautes-Pyrénées, were notified to be preventively culled (Figure 1).

On 14 February, the number of communes under notification was

doubled. On 21 February, the notified areas were increased for the

last time to include more than 500 communes in total. Additionally,

following Avian influenza H5 detection, ducks could not be moved

from or to infected farms (Guinat et al., 2020).

Epidemiological studies based on incidence data have provided

important insights into the HPAI epidemic patterns (Guinat, Nicolas,

et al., 2018) and the control measures (Andronico et al., 2019; Guinat

et al., 2020). Additionally, a recent phylogenetic study analyzed 196

viral sequences that were identified in poultry farms (Briand et al.,

2021). The study reported that the genotype that caused the large-

scale epidemic in southwest France was associated with five geo-

graphic clusters (Briand et al., 2021). This association could be the

consequence of a few long-distance transmission events followed by

local spread (Briand et al., 2021). However, the ecological and epidemi-

ological drivers of these transmission patterns are still unknown. To

fill this gap, we applied a phylodynamic framework to the 2016–2017

epidemic data. Viral phylodynamics is the study of viral phylogenies

and how they are shaped by potential interactions between epidemi-

ological, immunological and evolutionary processes (Holmes & Gren-

fell, 2009; Volz et al., 2013). These methods can detect spatiotem-

poral patterns of epidemics based on viral genomic data, which rep-

resent a powerful source of information and are complementary to

epidemiological approaches (Guinat et al., 2021). Although phylody-

namic methods are frequently used for reconstructing epidemic pat-

terns, their application in assessing control measures is still rare (Del-

licour et al., 2018). Here, we used a phylodynamic framework to quan-

tify the2016–2017H5N8epidemic in southwestFranceand tested the

effect of large-scale culling, along with other potential ecological and

epidemiological drivers. Doing so, we underscore the versatility of phy-

lodynamicmethods in addressing both, specific controlmeasure-based

questions, as well as more broad ones regarding viral spread history.

2 MATERIALS AND METHODS

2.1 Genomic data, bioinformatics and
phylogenetic methods

Note that 196 HPAI H5N8 viruses were isolated amongst the 484

farms that experienced an outbreak between November 2016 and

March 2017 (study period). The viral genomes were sequenced (one

sequence per farm) at the French national reference laboratory

for avian influenza (ANSES-Ploufragan, France; Briand et al., 2021).

Sequencemetadata, includingAccession numbers, are provided in Sup-

porting Information Appendix Tables S1 and S2. Each sequence was

geocoded and associated with the département where the outbreak

was located along with the collection date (Supporting information

S3). The départements we studied are as follows: Aveyron (n = 2),

Gers (n = 57), Hautes-Pyrénées (n = 14), Landes (n = 96), Lot-et-

Garonne (n = 5), Pyrénées-Atlantiques (n = 15) and Tarn (n = 7). The

whole concatenated virus genomic sequences were aligned using the

MUSCLE multiple sequence alignment algorithm (Edgar, 2004) imple-

mented in MegaX software with default parameters (Kumar et al.,

2018). Influenza viral genome is particularly prone to frequent genomic

reassortments (Lycett et al., 2019), which, if undetected, may provide

spurious genomic signals. We, therefore, checked for the absence of

recombination and reassortments in our aligned sequences using five

different algorithms, namely BootScan, CHIMERA, MaxCHI, RDP and

SisScan, implemented in RDP v4.1 (Martin et al., 2015). None of the

algorithms detected any recombination events. Therefore, we used all

available sequences (n= 196) across the seven départements for down-

stream analyses.
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e1576 CHAKRABORTY ET AL.

F IGURE 1 The spatiotemporal dynamics of the 2016-17H5N8 epidemic in southwest France. The bars represent the daily number of infected
farms identified in each département, with each département being represented by a different colour. The number of infected farms represented
those that were confirmed through PCR diagnostics during the epidemic period. The dates separating the three culling phases aremarked by three
vertical dashed lines. Inset: Map of southwest France with each study départementmarkedwith a specific colour corresponding to the source of
samples.

We conducted an exploratory phylogenetic analysis, based on a

maximum likelihood method (Minh et al., 2020), to ensure the geo-

graphic fidelity of the samples and that the samples collected earlier

were closer to the root of the phylogenetic tree. Following this analysis,

we conducted a structured andmore computationally intensive phylo-

dynamic analysis.

2.2 Phylodynamic reconstruction of viral
phylogeny and spread history

In our study, we used theGTR+Gamma4 substitutionmodel whichwas

selected as the best model by the SMS algorithm in the Programme

PhyML ver. 3 (Guindon et al., 2010). We also used a strict molecular

clock as is common for avian influenza viruses (Fourment & Holmes,

2015; Si et al., 2017) and also because the root-to-tip genetic distances

from the maximum likelihood tree and sampling dates of the samples

were strongly positively correlated. The phylogenetic temporal struc-

ture was assessed using Tempest ver. 1.5.3 (Rambaut et al., 2016).

2.3 Phylodynamic and generalized linear models

To infer the spread of H5N8, we used a recently developed phylo-

dynamic model called the marginal approximation of the structured

coalescent (MASCOT; Müller et al., 2018). This model was adapted in

order to describe the coalescence of lineages within and the migration

of lineages between departments and has been applied several times

to study the spread of pathogens (J. Yang et al., 2019; Müller et al.,

2019). To identify putative predictors of viral spread,weused theMAS-

COT model where the migrations rates and effective population sizes

through time are defined as a generalized linear model (GLM; Müller

et al., 2019).

2.4 Migration rate predictors

To investigate the effects of large-scale culling of ducks, we compared

viral spread before and after preventive culling was notified by the

French government. The assumption was that if culling was effective

then viral spread should be curtailed after the date of notification. To

test this scenario, we created a predictor based on 4 January 2017.

This was the date of the first notification when preventive culling was

implemented in 150 communes located at the border between Gers,

Landes, Pyrénées-Atlantiques and Hautes-Pyrénées départements. We

also created another predictor based on 14 February, when a second

notification was issued to extend the culling to other communes. The

last predictor of culling was based on 21 February, when the last notifi-

cation was issued to include yet more communes under culling control

measure. In Figure 1, we showed the daily distribution of the number

of outbreaks in each of the seven départements and marked the three

culling notification dates.

The movement of ducks between different farms is a major feature

of the foie-grasproduction in southwest France.Ducks, in large flocks of

several thousands, are first raised in breeding farms for up to 12weeks.

Then, they are divided into small groups of hundreds and transported

in batches to force-feeding farms across the region. Small batches are

necessary because the process of force-feeding is labour intensive and

can optimally be done only in small batches. At the force-feeding farms,

the ducks are fattened for 12 days and then are sent off to the slaugh-

terhouse for harvest. As a result of this process, farms are continuously

receiving and sending out shipments of ducks potentially facilitating
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the spreadof the virus aswell. To test any link betweenduckmovement

and viral spread between départements, we considered the total num-

ber of duck shipments exchanged between départements. These data

were obtained from the professional organization of fattening duck

producers (CIFOG) for the period between October 2016 and Febru-

ary 2017 (Guinat et al., 2019). This predictorwas considered time inde-

pendent.

The density of livestock is often linked to pathogen spread (Cantrell

et al., 2020; Craft, 2015; Tildesley et al., 2019) and the density of poul-

try farms in southwest France was found to be associated the occur-

rence of outbreaks in the case of the French HPAI 2016–2017 epi-

demic (Guinat et al., 2019). To test the role of poultry density in driving

viral spread, we considered the densities of duck and chicken farms per

département as predictors. During epidemics in livestock, humans can

spread pathogens between farms, either as fomites directly or through

sharing of equipment (Mansley, 2004; van Andel et al., 2021). Hence,

we also considered the human population per département as a sepa-

rate predictor. These time-independent variableswere computed from

the FrenchDirectorate-General for Food (DGAl) andCIFOGdatabases

(Guinat et al., 2019).

We also considered the total number of infected farms in a départe-

ment to be a potential predictor of viral spread as départements with

high number of cases could represent a major source of virus for other

departments. This variable is strongly positively correlated with sam-

ple sizes, that is, the numbers of sequences obtained in each départe-

ment (S4), which can be a potential predictor as well (Müller et al.,

2019; Yang et al., 2019). This correlation suggests that the propor-

tion of outbreaks thatwere sequencedwas of similarmagnitude across

départements, reflecting accurately the processes underlying differ-

ences in outbreak sizes. This is important because spatial sampling

design is known to impact phylodynamics patterns and may lead to

biased conclusions in case sampling design does not represent the epi-

demic dynamics (Guindon &Maio, 2021). In a preliminary analysis, we

considered sample size as a potential predictor along with the total

number of infected farms. Both predictors showed similar associations

with viral spread (data not shown). It is a common practice to drop one

of the collinear predictors to reduce the redundancy of collinear pre-

dictors.We decided to keep the total number of infected farms predic-

tor in the later analyses as we thought it is of more interest over sam-

ple size. As the first case was detected in Tarn, we considered a poten-

tial predictor that represented Tarn to be themost likely source of viral

spread for all départements.

Finally, two time-independent spatial variables were considered as

previous studies identified spatial patterns in the epidemic spread

(Guinat et al., 2019; Guinat, Nicolas, et al., 2018). We tested the effect

of the Euclidean distance between départements centroids as well as

the border sharing between départements on the viral spread between

departments.

2.5 Effective population size (Ne) predictors

In the case of Ebola virus epidemics, the number of detected cases

was found to be highly predictive of the viral effective population size

(Ne; Dellicour et al., 2018; Dudas et al., 2017; Müller et al., 2019).

It is derived from the Wright–Fisher population genetic model and

is assumed to be proportional to viral population size (Frost & Volz,

2010). In our analysis,we, therefore, used thenumber of infected farms

that were officially reported in each département per day, which was

smoothed using a 7-day moving average. However, if virus lineages

are erroneously time-stamped due to unknown sampling delay, a GLM

analysis may result in spurious association between case number and

Ne (Dellicour et al., 2018). So, for our second case number-based pre-

dictor, we artificially incorporated a 1-week delay in the case number

distribution to check for any delay (Müller et al., 2019).

To test any link between duck movement and Ne within a départe-

ment, we considered the total number of shipments exchanged

between farms within a département as another potential predictor.

Livestock density plays an important role in viral transmission and

hence could be linked toNe (Meadows et al., 2018).We used the densi-

ties of duck and chicken farms per département as potential predictors.

Humans, as fomites, can also influenceNe and hence human population

density was also used as a predictor. Both these predictors were time

independent. Also, all non-binary variables were log transformed and

standardized so that their means and standard deviations equalled

0 and 1, respectively. It must be noted that while Ne is a useful and

popular population geneticmeasure of epidemic size, it may not always

track epidemic size faithfully during the initial phase of an acute

outbreak (Frost & Volz, 2010). Therefore, its interpretation should

be cautious and context specific. We also tested multi-collinearity

between linear predictors of the viral effective population size GLM

(Supporting Information S1).

The modelling exercises and the Markov chain Monte Carlo

(MCMC) simulationswere conducted inBEASTv2.6.3 (Bouckaert et al.,

2014). For posterior sampling, we used the coupled MCMC package

(Müller & Bouckaert, 2020) with 100 million iterations. The conver-

gence and mixing of theMCMC chains were checked visually in Tracer

v1.7.1 (Rambaut et al., 2018). An analysis was considered successful if

the effective sample size of each of the parameters was at least 200.

The time-scaled phylogenetic tree with the most likely département of

each lineage was created in FigTree v1.4.3 (Rambaut, 2016).

2.6 Selection of generalized linear model

Model selection requires extensive computation, particularly for mod-

els with many parameters. Hence, MASCOT provides an efficient

model averaging approach, the Bayesian stochastic search variable

selection (BSSVS), that is used to calculate a binary indicator variable

(Lemeyet al., 2009;Müller et al., 2019). This variable indicates if its pre-

dictor has contributed (1= yes; 0=No) to theGLM.BSSVS results in an

estimate of the posterior inclusion probability or support for each pre-

dictor. Each predictor is also associatedwith a coefficient (Müller et al.,

2019). Thepurposeof the coefficient is to express thepredictor’s effect

size and the value can range between -∞ to ∞. We also measured the

confidence in the result based on Bayes factors (K), which is a Bayesian

alternative to classical Null-Hypothesis Significance Testing (Benjamin

et al., 2018; Keysers et al., 2020). Based on convention (Kass & Raftery,
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e1578 CHAKRABORTY ET AL.

F IGURE 2 Inferred epidemics dynamics based on structured coalescent populationmodel. (a) A time-scaledmaximum clade credibility (MCC)
phylogenetic tree representing the evolutionary relationship between viral lineages. The colour of a branch indicates the inferred location (see
legend) with the highest posterior support. A colour change on a branch indicates a virus spread event. Numbers of all the nodes are shown in the
supplementary figure; (b) A schematic of the prominent (maximum probability of inferred location> 0.7) viral spread events between
départements. (c) Estimates of viral effective population size (line in red; 95% highest posterior density; HPD in blue) and the time series of the
infected number of farms in Landes (black bar chart), themost affected département. (d) Estimates of viral population size (line in red; 95%HPD in
Blue) and the time series of the infected number of farms in Gers (black bar chart), the secondmost affected département

1995), we decided the confidence to be not substantial (1 > K < 3.2),

substantial (3.2 > K < 10), strong (10 > K < 100) or decisive (K > 100).

In the final model, we included only the predictors with at least sub-

stantially confident result. These statistical analyses were conducted

in R v4.0.3 (R Core Team, 2020).

3 RESULTS

3.1 Viral phylogeny and spread history

Figure 2a shows the evolutionary relationship between viral lineages

from different départements in the form of a time-scaled summarized

phylogenetic tree. It also shows the most likely viral spread history of

the lineages between départements, each of which is represented by a

different colour. A change in colour across tree branches represents

spread events between départements. We inferred Tarn to be the most

likely sourceof all the viral lineages in southwest France (medianposte-

rior probability=0.75, 95%credible interval; CI=0.16–1). Themedian

day of the emergence was estimated to be the middle of November

2016 (95% CI = 27 Oct.–22 Nov.). The clustering of basal sequences

indicated a single introduction event in southwest France, followed

by epidemic transmission (short terminal branches) mainly toward the

west.

According to the inferred migration history (Figure 2b), the virus

mostly spread between neighbouring départements. The only exception

to this patternwasmigration fromTarn toGers. Inmost cases, the virus

migrated in one direction, from one département to another and did

not come back to the source. However, in a few instances—between

Gers and Landes and occasionally between Landes and Pyrénées-

Atlantiques, we observed bidirectional spread of the virus. Gers was

the most frequent source of spread and was responsible for spread

into three other départements, namely Lot-et-Garonne (once), Landes

(onmultiple occasions) andHaute-Pyrenees (once). On the other hand,

both Gers and Landes were the départements where viruses were

introduced from more than one département—namely Tarn (once) and

Landes (in multiple occasions) into Gers and Gers (in multiple occa-

sions) andPyrénées-Atlantiques (at least twice) and Landes (inmultiple

occasions). On the other end of the spectrum, Hautes-Pyrénées and

Aveyron were the départements that received viruses in single events

and never passed it forward to any other départements. Towards the

end of the outbreak, lineages reached Pyrénées-Atlantiques on mul-

tiple occasions, all exclusively from Landes despite sharing its border

with two other départements (Gers and Hautes-Pyrenees) as well.
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CHAKRABORTY ET AL. e1579

F IGURE 3 The generalized linear models (GLMs) of the viral spread between départements. (a) The viral spread predictors and their level of
support are based on indicator probability, which was estimated based on Bayesian Stochastic Search Variable Selection (BSSVS). Different
strengths of support aremarked by vertical lines. Predictors whose indicators had at least substantial support (Bayes factor, BF= 3.2) were
included in the final GLM. (b) The boxplots depict the strength and direction of each predictor’s effect

The estimated viral effective population size Ne distribution for

Landes—most affected in terms of case numbers—and Gers—second

most affected—départements were proportional to the corresponding

time series of case numbers (Figure 2c,d).

3.2 Identifying the predictors of viral spread
between départements

In Figure 3a, we show the viral spread predictors and their level of

support in the form of the Bayes factor (K). Predictors with at least

substantial support (K > 3.2) were included in the final GLM (Kass &

Raftery, 1995). In Figure 3b, we show the estimated coefficients, which

represent the strength and direction (positive or negative) of each pre-

dictor’s effect on the between-département viral spread. The analysis

demonstrated that sharing of borders (K > 3.2) as well as the period

of culling of the epidemic (before and after 4 January) (K > 10) were

important predictors of the observed spread patterns associated with

viral spread. We inferred both predictors to positively predict spread,

meaning that spread was greater between départements with shared

borders and that spread was reduced after the 4 January culling initia-

tion date.

3.3 Identifying the predictors of viral effective
population size Ne

Figure 4 shows the results of a phylodynamic GLM analysis where we

investigated the relationship between viral effective population size

Ne and a number of potential predictors. In Figure 4a, we show the Ne

predictors and their level of support based on indicator probability.

The predictors whose indicators had at least substantial support

(Bayes factor, K = 3.2) were included in the final GLM (Figure 4a). In

Figure 4b, we showed the estimated coefficients, which represented

the strength and direction of each predictor’s effect. Based on our

inclusion criterion, the final GLM again included only two predictors,

namely the case numbers (K > 100, decisive) and the duck movement

within département (K> 3.2).

4 DISCUSSION

In 2016–2017, France experienced a devastating epidemic of highly

pathogenic avian influenza (HPAI) epidemic caused by an H5N8 sub-

type of the lineage 2.3.4.4b (A/Gs/Gd/1/96 clade). This outbreak

caused major economic losses to the industry and contributed to the

implementationof stricter farmbiosecuritymeasures (Andronico et al.,

2019). Unfortunately, the virus returned to France in the winter of

2020 causing yet another epidemic in the southwestern part of the

country, highlighting the importance of understanding its transmis-

sion dynamics and the effectiveness of the control strategies that

were implemented. Employing phylodynamic methods that combine

genomic and epidemiological data, we showed that the large-scale pre-

ventive culling measure initiated on 4 January 2017 was successful

in reducing viral spread between départements. At the regional scale,

we showed that viral spread between départements occurred more

frequently between départements that shared borders than between

départements that were far apart, which is consistent with the geo-

graphical clusters identified in Briand et al. (2021). Our results could

not find links between the viral spread between départements and duck

transport. Within départements, we found that duck movements were

positively but weakly associated with the viral effective population

size. However, the number of infected farms was a powerful predictor

of the effective population size. Additionally, our phylodynamic anal-

ysis estimated the date of viral emergence close to the date of the

first detection, traced the origin of the epidemic to Tarn and exhibited

detailed viral spread history between départements.

To curb the epidemic, preventive culling was implemented by pre-

emptively depopulating yet uninfected (or undetected due to lack of

clinical signs) farms. This measure created a spatial gap in the path
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F IGURE 4 The generalized linear models (GLMs) of viral effective population sizeNewithin départements. (A) TheNe predictors and their level
of support are based on indicator probability, which was estimated based on Bayesian Stochastic Search Variable Selection (BSSVS). Different
strengths of support aremarked by vertical lines. Predictors whose indicators had at least substantial support (Bayes factor, BF= 3.2) were
included in the final GLM. (b) The boxplots depict the strength and direction of each predictor’s effect.

of the epidemic. This gap is supposed to act as a barrier—similar to a

Firebreak—to slow or stop the progress of epidemic between infected

and yet uninfected zones. Preventive culling has been shown to be

an effective control measure for fast-spreading pathogens (Ferguson

et al., 2001; Keeling et al., 2001; Le Menach et al., 2006). In the case of

the French HPAI 2016–17 epidemic, a mathematical modelling study

showed that preventive culling has halved the epidemic size, as com-

pared to a scenario without preventive culling (Andronico et al., 2019).

Our results also support the efficacy of preventive culling in reduc-

ing the regional, that is, long-distance spread of the virus, which may

not be controlled by culling of infected farms only. Taken together with

earlier studies (Andronico et al., 2019; Guinat et al., 2020), our study

can informdecision-making onpreventive culling, even though itwould

require a more detailed understanding of the optimal conditions for

this strategy, particularly with regard to the timeliness and location of

its implementation.

In our study, we also investigated the role of the two extensions of

preventive culling, which were successively implemented on 14 and

21 February 2017. Despite including more communes for culling, our

results could not find evidence that these two culling phases reduced

the transmission of H5N8 beyond the effect that the first culling phase

on 4 January 2017 had.

Preventive culling is often seenas a controversial strategydue to the

killing of healthy livestock and high operational costs (Lederman, 2016;

te Beest et al., 2011). In the case of southwest France, which experi-

enced yet another devastating epidemic of HPAI during 2020–2021,

it is likely that alternatives to preventive culling are required, includ-

ing structural changes of the poultry production systems. A hypothesis

that would be worth investigating is how a decrease in the duck farm

density in the southwest region of France could improve the resilience

of the poultry sector to the risk of HPAI in the long term because

palmiped farms have been shown to be both more susceptible and

more infectious than galliform farms during the 2016–2017 epidemic

(Andronico et al., 2019).Decreasingduck farmdensity—in combination

with stronger biosecurity practices—mayat least slowdown the spread

of the virus, even if it may not prevent an epidemic. This is still useful

because the slowing down may provide additional time to veterinary

services to implement outbreak interventions, which, in the end, would

help reducing the number of preventively culled flocks.

Our results did not find evidence that the amount of duck move-

ments between départements impacted the spreadof the virus between

départements. This finding—along with the evidence of between-

département viral spread only between adjacent départements—

suggests that most live-duck movements probably did not play any

role in the viral spread. This is consistent with observations that the

duck movements that could have been responsible for the spread

of the virus were quite limited and mostly occurred at the very

early phases of the epidemic before stringent movement bans were

implemented (Guinat et al., 2020). This could also be explained by

the implementation of a PCR test for all duck flocks that were about

to be transported. One other explanation of this pattern could be

that the ban on movements successfully disrupted the association

between viral spread and long-distance duck movements. However,

we did not consider the duck movements as a time-varying predictor,

which could have impacted our ability to detect duck movements as a

predictor of viral transmission between départements. This hypothesis

could be tested in the future with duck movement data collected over

time (time-dependent variable). Alternatively, our results could also

mean that the virus did not spread in the long-distance through duck

movements, but by some other mechanisms. Two major contenders

for alternative mechanisms of viral spread are humans and farm

equipment as fomites and wild birds as carriers. We did not find any

significant association between human population density—which

acted as a proxy for human activity—and viral spread. This suggested

that human populations, which were not specifically involved in the

duck-producing industry, did not play a major role in spreading the

virus. An interesting development of this analysis would be to include

equipment sharing data, although collection of these data are chal-

lenging as such records are probably not maintained methodically.

Regarding the wild-bird related mechanisms, a study on Chinese

poultry industry indicated that wild birds did not play a major role

in spreading avian influenza viruses along the value chain across
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the country, in contrast to between-country spread for which wild

birds play a prominent role (Yang et al., 2020). This is likely to be

the case in southwest France as well. Another potential mechanism

could be wind-borne transmission, which is suspected in the case of

HPAI (Scoizec et al., 2018; Ypma et al., 2013; Zhao et al., 2019). But,

a previous study did not find any link between the direction of wind

during the epidemic and the direction of viral spread, suggesting that

the transmission was unlikely to be wind-borne (Guinat, Rouchy, et al.,

2018). However, the study was limited to a specific period during the

epidemic, hence the role of wind in spreading the virus will still need to

be investigated.

Our results indicated that the virus entered southwest France

through Tarn and that this event represented a single source of the epi-

demic. This observation is likely to be robust because (i) all the sam-

ples from Tarn are monophyletic and connect to the root, (ii) termi-

nal branches are short, and (iii) it is consistent with a recent study

based on phylogenetic approaches (Briand et al., 2021). Although Tarn

itself is not considered to have a high exposure risk from migratory

birds, the single introduction pattern is likely to be explained by the

European routes ofmigratorywaterfowls because theestimatedemer-

gence interval coincided with the winter migration season (October–

November) of many wild waterfowl species. These species are now

known to carry and spread multiple avian influenza A viruses in poul-

try around the world, Still, we cannot completely reject the possibil-

ity of multiple introductions of a virus on the basis of the phylogeny

alone (da Silva Filipe et al., 2021; Hill et al., 2015). Indeed, if the

genomic sequences from distinct introductions are similar and in turn

form monophyletic clusters, then the number of introductions could

be underestimated. However, given avian influenza viruses are RNA

viruseswith highmutations rates, this alternative hypothesis is unlikely

to hold. Our finding of a single introduction that acted as the source

of the whole epidemic supports a previous phylogenetic study (Briand

et al., 2021) and is consistent with outbreak investigations and epi-

demiological analyses (Andronico et al., 2019; Guinat, Nicolas, et al.,

2018). Indeed, the index case in poultry was suspected and confirmed

in a duck-breeding farm in Tarn, the day after that farm sent live-ducks

to force-feeding farms in Gers and Lot-et-Garonne. This event is likely

to have triggered the viral spread (Guinat et al., 2020).

Overall, by successfully analyzing the impact of control measures,

we showed the versatility of viral phylodynamic methods in provid-

ing both a broad understanding of epidemics and the means to test

hypotheses related to specific control measures. Finally, the method-

ology used in this study can be efficiently adapted to study the impact

of control measures onmany other viral epidemics.
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