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Lentinan -triggered butyrate-
producing bacteria drive the
expulsion of the intestinal
helminth Trichinella spiralis
in mice

Xuemin Jin1†, Yi Liu1†, Isabelle Vallee2, Gregory Karadjian2,
Mingyuan Liu1,3 and Xiaolei Liu1*

1State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of
Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China,
2UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health
Laboratory, Maisons-Alfort, France, 3Jiangsu Co-innovation Center for Prevention and Control of
Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a

worldwide distribution. Lentinan (LNT) is known to modulate the intestinal

environment with noted health benefits, yet the effect of LNT against intestinal

helminth is unknown. In our study, we first observed that LNT could trigger

worm expulsion by promoting mucus layer functions through alteration of gut

microbiota. LNT restored the abundance of Bacteroidetes and Proteobacteria

altered by T. spiralis infection to the control group level. Interestingly, LNT

triggered the production of butyrate. Then, we determined the deworming

capacity of probiotics (butyrate-producing bacteria) in mice. Collectively, these

findings indicated that LNT could modulate intestinal dysbiosis by T. spiralis,

drive the expulsion of intestinal helminth and provided an easily implementable

strategy to improve the host defence against T. spiralis infection.

KEYWORDS

Trichinella spiralis, lentinan, mucin, gut microbiota, butyrate
Introduction

Helminths are a major global health problem. Trichinellosis, caused by Trichinella

spiralis, brings huge morbidities to the host population (1). T. spiralis infects wild and

domestic animals through contaminated pig meat, as the major source for Trichinella

transmission, which has a negative impact on the pork meat market. Prevention of this

disease by interrupting helminth transmission includes drug and vaccine development

for livestock. In the early stages of infection, the host expels T. spiralis from the intestine
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through ‘weep’, leading to hyperplasia of goblet cells and

increased production of mucin (the ‘weep’) (2), suggesting that

priming of mucus production could have evolved to protect

against helminth infection.

The mucus layer overlies the intestinal epithelium, known as

the first barrier. Thickening of the mucus layer is a common

feature of intestinal helminth infection (3). One significant

feature of intestinal homeostasis is the host microbiota, which

plays a critical role in supporting pathogen defense (2, 4) and

may actually be necessary for host defence against parasites (5,

6). Interestingly, the presence of specific bacteria in the gut

shapes the glycan profile of mucus (7), which mediates

protection against pathogens (8). The potential value of

microbiota in the development of new therapies for helminth

infection has attracted much attention (9). We therefore

hypothesized that changes in gut microbiota influence the

ability of the host to expel helminth through mucus.

b-glucan from barley could trigger worm expulsion

dependent on the gut microbiota (10). However, b-glucan
from different sources may have different functions. Lentinan

(LNT), another b-glucan, is extracted from mushroom (11).

Previously, we showed the adjuvanticity of LNT against

helminth T. spiralis infection (12). It has been reported that

oral administration of polysaccharides such as LNT can be

utilized by intestinal microbiota, thereby contributing to

microbiota changes (13). Supplementation with LNT orally

increased the expression levels of mucin and attenuated virus

–induced intestinal damage in the host through intestinal

microbiota and their metabolites (14). However, the effect of

LNT against intestinal helminth infection is not completely

understood and the role of LNT -induced gut microbiota

remains elusive.

In the present study, we assessed the efficacy of LNT on

helminth Trichinella infection in the intestine. We found that

LNT could trigger worm expulsion by promoting mucus layer

functions. Moreover, the deworming capacity of LNT was

examined along with the effect on gut microbiota composition.

And LNT failed to reduce the helminth burden in mice with gut

microbiota-dysbiosis due to impairment of the mucus layer,

suggesting that gut mircobiota composition contributed to LNT

-triggered worm expulsion. The specific beneficial bacteria were

analysed and the related metabolites were used to expel T.

spiralis in the intestine.
Materials and methods

Ethics statement

C57BL/6J mice (female, 4-6 weeks old) were purchased from

the Norman Bethune University of Medical Science (NBUMS),

China. Female Wistar rats were purchased from the Experimental

Animal Centre of College of Basic Medical Sciences, Jilin University
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(Changchun, China) and kept in a temperature-controlled room

(22 ± 2°C) under a 12 h dark–light cycle. All animal experiments

were performed according to regulations of the Administration of

Affairs Concerning Experimental Animals in China. The protocol

was approved by the Institutional Animal Care and Use Committee

of Jilin University.
Helminths

The T. spiralis isolate (ISS534) was obtained from a naturally

infected domestic pig in Henan Province in China. Briefly,

Wistar rats were orally infected with 3000 infective larvae, and

T. spiralis muscle larvae (ML) were recovered at 35 days post

infection (dpi) (15).
Lentinan administration experiment

To evaluate the role of type 2 immunity in the effect of LNT

(MedChemExpress, HY-N6653) on T. spiralis infection, the

mice were randomly divided into 5 groups (n =6 per group):

(1) the control (Con) group were untreated, (2) the group were

infected with 500 ML, (3) the group were administrated orally

with LNT (100 mg/kg) daily from -14 dpi to 7 dpi and infected

with 500 ML, (4) the group were administrated with STAT6

inhibitor, AS1517499 (20 mg/kg i.p) at 1, 3 and 5 dpi and

infected with 500 ML, (5) the group were administrated orally

with LNT (100 mg/kg) daily from -14 dpi to 7 dpi, AS1517499

(20 mg/kg i.p) at 1, 3 and 5 dpi and infected with 500 ML.

To verify the the role of microbiota in the effect of LNT on T.

spiralis infection, the mice were randomly divided into 5 groups

(n =6 per group): (1) the control (Con) group were untreated, (2)

the group were infected with 500 ML, (3) the group were

administrated orally with antibiotics (ampicillin 1 g/L,

vancomycin 0.25 g/L, neomycin 1 g/L, and metronidazole 1 g/

L) daily 2 weeks before T. spiralis infection (500 ML), (4) the

group were administrated orally with LNT (100 mg/kg) daily

from -14 dpi to 7 dpi and infected with 500 ML, (5) the group

were run in parallel with antibiotics and LNT daily 2 weeks

before T. spiralis infection (500 ML) and LNT administration

continued for 1 week after infection. The mice were sacrificed

using CO2 asphyxiation at 7 dpi and 35 dpi for collecting

helminthes (intestinal adult worms and muscle larvae). Small

intestine and content were immediately collected for the

following experiment.
Measurements of the small intestine
mucus layers

Post Carnoy’s fixation, the methanol-stored duodenum

samples were embedded in paraffin, cut into thin sections (5
frontiersin.org
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mm), and deposited on glass slides. Periodic acid Schiff (PAS)

staining was performed according to standard protocols.

Quantification of the goblet cell number was carried out by

blinded operators. The sections were incubated with anti- mucin

2 (Muc2) rabbit polyclonal antibody (1:400 dilutions; Abcam)

for immunohistochemistry according to kit manufacturer

instructions. PAS and immunohistochemistry of Muc2 in

duodenum. Scale bars: 50 mm.
Real time PCR

mRNA expression of mucin 2 (Muc2) were quantified using

RT-PCR using SYBR Green QPCR Master Mix (TaKaRa, Japan)

with an Applied Bioscience 7500 thermocycler and FastStart

Universal SYBR Green Master (Roche Applied Science,

Germany) as described previously (16). Briefly, RNA

extraction was performed by lysing 100 mg of small intestine

tissue samples with Trizol reagent (Invitrogen). The primers of

Muc2 were as follow: 5′- CCTTAGCCAAGGGCTCGGAA-3′
and 5′- GGCCCGAGAGTAGACCTTGG-3′ (17). The relative

mRNA expression levels of the target genes were normalized to

those of the indicated housekeeping gene (GAPDH) (5′-
A C T C C A C T C A C G G C A A A T T C - 3 ′ a n d 5 ′ -
TCTCCATGGTGGTGAAGACA-3) and were quantified using

the comparative Ct method and the formula 2-DDCT.
Microbial analysis in small intestine
contents

Genomic DNA amplification and sequencing were conducted.

PCR amplification was performed as described previously (18).

Briefly, microbial DNA was extracted from 100 mg of small

intestine contents of mice under strict aseptic operation. Then

DNA was stored at -80°C until further processing. The V3-V4

region of the bacterial 16S rRNA gene was amplified with the

common primer pair (Forward primer, 5’- ACTCCTACGGG

AGGCAGCA-3 ’ ; reverse primer, 5 ’- GGACTACHVG

GGTWTCTAAT-3’) combined with adapter sequences and

barcode sequences. Microbiome sequencing data have been

deposited at the National Center for Biotechnology Information,

Sequence Read Archive (PRJNA723732).

The bioinformatics analysis of this study was performed with

the aid of the BMK Cloud (Biomarker Technologies Co., Ltd.,

Beijing, China). We processed the raw data with Trimmomatic

(v0.33) to trim low quality reads. Cutadapt was used to discard

forward and reverse primers. The paired-end reads that were

obtained were merged using FLASH v1.2.11 software, and reads

with a length ≥400 pb were kept for the following analysis. The

UCHIME algorithm (v8.1) was used in detecting and removing

chimera sequences to obtain the clean tags. Sequences with

similarity ≥97% were clustered into the same operational
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taxonomic unit (OTU) by USEARCH (v10.0) (19), and the

OTUs with reabundace <0.005% were filtered. Taxonomy was

assigned to all OTUs by searching against the SILVA databases

using the RDP classifier within QIIME2. The Alpha diversity and

Beta diversity were calculated and displayed by the QIIME and R

software, respectively. Furthermore, we employed Linear

Discriminant Analysis (LDA) effect size (LEfSe). Based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) functional

pathway, the functional composition was prediceted for each

sample using Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (PICRUSt) (20). Statistical

analyses were conducted with STAMP, and functional differences in

orthologs among groups were assessed by a one way ANOVA

followed by Tukey-Kramer multiple comparisons (21).
Culture of Clostridium tyrobutyricum

Clostridium tyrobutyricum (C. tyroburyricum, ATCC25755)

was purchased from ATCC. C. tyroburyricum were cultured in

supplemented medium for 8 h, and the culture broth was

centrifuged at 5000 ×g for 10 mins. The C. tyrobutyricum were

suspended in sterile PBS. The culture supernatant of C.

tyrobutyricum was collected and sterilized with a 0.22mmfilter.
SCFAs concentrations assay

SCFA analysis was performed as described (22). Small

intestine contents samples and C. tyrobutyricum culture

supernatant were thawed, processed using vacuum distillation,

and analyzed using gas chromatography on an Agilent 7890A

GC system with an HP-INNOWAX column (30 m × 0.32 mm ×

0.5 mm) and flame ionization detector (Agilent Technologies

Inc., CA, USA). Results were reported as mmol/g according to

the original weight of contents used, excluding their moisture

values, as SCFAs are contained within the solid phase of the

contents. All measurements were performed in triplicate.
Sodium butyrate and Clostridium
tyrobutyricum administration experiment

Sodium butyrate (SB) (Sigma Aldrich) was >97% high-

performance liquid chromatography purity. SB (200 mg/kg) or

C. tyrobutyricum (108 CFU/200 µL PBS) was orally administered

to mice daily from -14 dpi to 7 dpi and mice (n =6 per group)

were infected with 500 ML for establishing the acute infectious

model. 6 mice per group were sacrificed using CO2 asphyxiation

at 7 dpi. Small intestine and content were immediately collected

for the following experiment. Intestinal adult worms were

collected at 7 dpi. The remaining mice (n=6 per group) were
frontiersin.org
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sacrificed using CO2 asphyxiation and ML were recovered and

counted at 35 dpi.
Statistical analysis

All results were expressed as the mean ± SD. N refers to the

number of mice used. The data shown are representative of three

independent experiments. Statistical differences were determined

using a 2-tailed Student’s t test or 1-way analysis of variance (Tukey

honestly significant difference multiple comparison test) using

GraphPad Prism (GraphPad Prism 8 Software, San Diego, CA).

A P values are expressed as *p<0.05, **p< 0.01 and ***p<0.001.
Results

Gut microbiota played a role in LNT –
triggered expulsion of T. spiralis

To evaluate the role of type 2 immunity in the effect of LNT

on T. spiralis infection, mice infected with T. spiralis were
Frontiers in Immunology 04
administered a STAT6 inhibitor. We demonstrated that LNT

significantly reduced the adult worm at 7 dpi and muscle larvae

burden at 35 dpi. Interestingly, although inhibition of the IL-4

and IL-13 (type 2 cytokines) levels induced an increased

burden of T. spiralis, we found that LNT still significantly

reduced the burden of helminth (Figures S1A, B). Emerging

evidence has revealed that the composition of intestinal

microbiota is an important factor in regulating mucus barrier

function in the intestine (7). To determine the role of gut

microbiota in LNT –triggered host defence against T. spiralis

infection, one group of mice administered an antibiotic

treatment (AT) and LNT for comparison (Figure 1A). Adult

worm and larvae burden were not significantly different in T.

spiralis –infected mice with or without AT, however, the

burden in mice with LNT + AT was significantly higher than

the LNT alone group (Figures 1B, C), suggesting that the

deworming capacity of LNT were impaired by AT. Moreover,

mucus secretion was decreased in AT –induced gut

microbiota-dysbiosis mice compared to the mice without AT.

The expression of Muc2 induced by LNT was also significantly

inhibited by AT (Figures 1D–F).
B C

D E F

A

FIGURE 1

LNT failed to reduce the burden of T. spiralis in gut microbiota-dysbiosis mice. (A) Mice were administered an antibiotic treatment (AT) and LNT.
(B) Adult worms (7 dpi) and (C) muscle larvae (35 dpi) were recovered from mice in each group, and the abundance of T. spiralis was calculated.
(D) Periodic acid Schiff (PAS) staining (200×) of duodenal tissues (Scale bars: 50 mm). (E) Immunohistochemistry of duodenal tissues with anti-
Muc2 antibody. (F) mRNA level of Muc2. Data are presented as the mean ± sd (n=6). The data shown are representative of three independent
experiments. ns, not significant and ***p<0.001 as indicated by the line (one-way ANOVA with Tukey’s post test). These figures are
representative of three independent experiments.
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LNT administration shifted the gut
microbiota in T. spiralis-infected mice

To investigate the effects of LNT on gut microbiota, 16S

rRNA gene sequencing was performed. We showed that T.

spiralis infection significantly decreased a-diversity in the

Shannon index and Simpson index. The a-diversity was

significantly increased in T. spiralis –infected mice with LNT

administration (Figure 2A). A clear separation among the

control group and T. spiralis group with or without LNT was

found using UniFrac-based principal component analysis

(PCoA) to evaluate the b-diversity (Figure 2B). T. spiralis

infection significantly reduced the relative abundance of

Bacteroidetes and enhanced Proteobacteria compared to

controls (both p < 0.05), while LNT restored the abundance of

Clostridiales and Bacteroidales to the control group level and

significantly decreased the abundance of Proteobacteria

compared to the T. spiralis group (Figures 2C–E). Linear

discriminant analysis effect size (LEfSe) indicated that bacteria

belonging to Clostridia and Bacteroidia were enriched in gut

bacterial communities by LNT (LDA score >4) (Figure 3).
Frontiers in Immunology 05
Notably, the amount of Muribaculaceae and Lachnospiraceae

NK4A136 in LNT-fed mice was restored (Figure 3).

In level two KEGG pathways, 22 functional orthologs were

altered significantly in the Ts group compared with the control

group (Table 1). LNT was related to the obvious changes in

microbial function among these functional orthologs, including

cell motility, cellular community prokaryotes, transport and

catabolism, metabolism of other amino acids, infectious diseases:

parasitic, glycan biosynthesis and metabolism. Importantly, the

abundance of functional genes related to parasitic infectious

diseases increased in the T. spiralis -infected mice, but LNT could

significantly decrease the abundance of these functional genes. In

addition, LNT increased the functional genes related to glycan

biosynthesis and metabolism compared to T. spiralis -infected mice.
LNT increased the concentration of
butyrate in T. spiralis –infected mice

SCFAs are associated with mucus in the intestine (7). It has also

been observed that SCFAs, such as acetate and butyrate, stimulate
B

C D E

A

FIGURE 2

Characterization of the gut microbiota in mice after administration of LNT in T. spiralis –infected mice. The microbiota composition in the small
intestine contents was analyzed by 16S rRNA gene sequencing (n =6). (A) Shannon index and Simpson index (a diversity). (B) Principal
coordinates analysis (PcoA) plot (b diversity) ***p<0.001 as indicated by the line (one-way ANOVA with Tukey’s post test). (C) Composition of
abundant bacteria at the phylum level. (D) Composition of abundant bacteria at the class level. (E) Composition of abundant bacteria at the
order level.
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B

A

FIGURE 3

The most differentially significant abundant taxa enriched in microbiota by linear discriminant analysis (LDA). (A) Linear discriminant analysis
(LDA) effect size showing the most differentially significant abundant taxa enriched in microbiota from the control group (Con), T. spiralis group
(Ts), and T. spiralis + LNT group (TsLNT). (B) Heatmap of the abundance of bacteria at the genus level from the Con, Ts and TsLNT groups.
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Muc2 expression in intestinal epithelial cells and increase mucus

production and secretion (7). No statistically significant difference

was observed in the concentrations of acetate and propionate

between the Ts group and Ts+LNT group, whereas a significant

decrease in the concentration of butyrate was noted (Figure 4A). In

addition, the levels of butyrate in C. tyrobutyricum culture

supernatant was shown in Figure 4B.
Frontiers in Immunology 07
Sodium butyrate and Clostridium
tyrobutyricum triggered the expulsion of
T. spiralis

Butyrate is a primary product of gut microbial fermentation

(23). C. tyrobutyricum is a probiotic, that is a butyrate-producing

bacterium (24). To evaluate the effect of butyrate against T.
TABLE 1 Predicted KEGG functional pathway differences at level 2 inferred from 16S rRNA gene sequences using PICRUSt during T. spiralis
infection with or without LNT.

Functional categories

Level 1 Level 2 Con:mean ±
sd(%)

Ts:mean ±
sd(%)

TsLNT:mean ±
sd(%)

Con vs Ts p
value

TsLNT vs Ts p
value

Cellular Processes Cell motility 1.227±
0.251

0.173±
0.098

1.012±
0.271

<0.001 <0.001

Cellular community -
prokaryotes

1.468±
0.079

1.183±
0.115

1.472±
0.032

0.001 0.002

Transport and catabolism 0.278±
0.07

0.138±
0.025

0.303±
0.038

0.005 <0.001

Environmental Information
Processing

Signal transduction 2.772±
0.171

2.181±
0.127

2.691±
0.137

<0.001 <0.001

Genetic Information
Processing

Folding, sorting and degradation 1.586±
0.03

1.727±
0.06

1.573±
0.022

0.002 0.001

Human Diseases Cancers: Overview 0.507±
0.025

0.686±
0.035

0.501±
0.01

<0.001 <0.001

Drug resistance: Antimicrobial 1.01±
0.025

0.862±
0.039

1.023±
0.03

<0.001 <0.001

Infectious diseases: Parasitic 0.022±
0.005

0.046±
0.007

0.037±
0.002

<0.001 0.007

Cancers: Specific types 0.046±
0.007

0.177±
0.046

0.045±
0.003

0.001 0.001

Neurodegenerative diseases 0.132±
0.032

0.354±
0.166

0.114±
0.01

0.001 0.002

Infectious diseases: Viral 0.006±
0.006

0.044±
0.029

0.005±
0.002

0.027 0.034

Metabolism Metabolism of other amino
acids

1.333±
0.056

1.781±
0.052

1.37±
0.081

0.029 0.029

Metabolism of terpenoids and
polyketides

1.07±
0.013

1.183±
0.017

1.054±
0.015

0.030 0.023

Xenobiotics biodegradation and
metabolism

0.757±
0.081

1.34±
0.144

0.821±
0.088

0.032 0.031

Energy metabolism 3.852±
0.181

4.569±
0.189

3.839±
0.023

0.000 0.000

Biosynthesis of other secondary
metabolites

1.038±
0.06

0.727±
0.104

1.062±
0.015

<0.001 <0.001

Glycan biosynthesis and
metabolism

1.558±
0.193

1.169±
0.024

1.611±
0.093

<0.001 <0.001

Carbohydrate metabolism 10.04±
0.266

9.078±
0.541

10.15±
0.177

<0.001 <0.001

Organismal Systems Nervous system 0.207±
0.009

0.124±
0.025

0.215±
0.008

<0.001 0.001

Aging 0.282±
0.016

0.407±
0.057

0.272±
0.001

0.006 <0.001

Immune system 0.077±
0.005

0.044±
0.017

0.079±
0.003

0.009 0.005

Circulatory system 0.004±
0.005

0.055±
0.04

0.001±
0.001

<0.001 <0.001
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spiralis infection, mice were orally administered with SB or C.

tyrobutyricum daily. Both SB and C. tyrobutyricum significantly

decreased the burden of adult worms at 7 dpi and muscle larvae

at 35 dpi in mice (Figures 5A, B). Consistently, SB and C.

tyrobutyricum increased the numbers of goblet cells and

promoted the secretion of mucus and Muc2 expression

(Figure 5C–E).
Discussion

LNT has immunity-enhancing effects and we showed the

adjuvanticity of LNT against helminth T. spiralis infection in the

previous study (12). It has been reported that polysaccharides such

as LNT can provide energy for gut microbiota in the intestine, and

are associated with the homeostasis of the gut microbial community

and overall host health (25). Intestinal dysbiosis participates in the

pathogenesis of infections (26). In addition, LNT can ameliorate

bacterial LPS –induced intestinal inflammation through gut

microbiota (27). In this paper, we aimed to investigate the effect

of oral LNT on helminth expulsion in vivo. We observed that an

impaired type 2 immune response did not eliminate the capacity of

worm expulsion by LNT; however, the gut microbiota contributed

to LNT-triggered expulsion of helminth in the intestine by

promoting the level of mucus. The intestinal mucus produced by

goblet cells is a key player in the defense against enteric pathogens

(2, 28). Increased goblet cell mucus secretion lead to alterations in

the protective properties of the mucus barrier, which can directly or

indirectly affect parasite establishment. It constitutes part of the

“weep” response that develops to promote worm expulsion.

Hyperplasia of goblet cells that produce mucin occurs in

helminth infections, including Trichinella spiralis, Trichuris muris,

and Nippostrongylus brasiliensis (29–31). Muc2 is the main source

of mucin within the intestine and lack of Muc2 results in delayed

expulsion of helminths in the intestine (32). Our results
Frontiers in Immunology 08
demonstrated that LNT significantly elevated the expression of

Muc2, suggesting that LNT promotes mucus production, thereby

driving the expulsion of intestinal helminths.

The microbiome plays a major role in mucus changes (7). We

demonstrated that LNT administration ameliorated the shift in gut

microbiota composition induced by T. spiralis infection. The results

of 16S rRNA gene sequencing analysis demonstrated that T. spiralis

infection decreased the diversity of gut microbiota composition

whereas LNT restored the abundance of Bacteroidales and

Clostridiales to the control group level. Notably, the

Muribaculaceae and Lachnospiraceae families were enriched in

the gut bacterial communities restored by LNT. Muribaculaceae

family was named as S24-7 at first. One genera of this family may be

essential for glycan degradation (33), indicating that mucus

production by LNT is enhanced, leading to an enriched

Muribaculaceae family. Furthermore, Lachnospiraceae are a

family of anaerobic bacteria in the Clostridiales order within the

Firmicutes phylum, including species previously identified as

Clostridium clusters (34) and accumulate near the mucosa,

allowing them to affect the host epithelial and mucosal immune

system (35). The Lachnospiraceae can promote the colonization

resistance of microorganisms to pathogens through metabolites

(36). Lachnospiraceae NK4A136 group involves in metabolic

disease (37). The Lachnospiraceae family also affects enterocytes

by producing SCFAs such as butyrate (38). It is indeed well known

that 16S rRNA sequencing allows genus-level resolution at most,

which is a limitation of this study, while shotgun metagenomics

sequencing will provide more meaningful functional annotation

data, which is worth investigating in the future. Interestingly, we

consistently demonstrated that LNT significantly enhanced the

levels of butyrate, indicating that this metabolite may drive

expulsion function of T. spiralis in the intestine.

Other studies have demonstrated that gavaging probiotics

enables mice to regain faster intestinal SCFA production (39),

such as butyrate (40) and SCFAs are absorbed and used by
A B

FIGURE 4

Concentrations of short-chain fatty acids (SCFAs). SCFA analysis of (A) small intestine contents samples (n=6) and (B) C. tyrobutyricum culture
supernatant (n=3) was performed. Data are presented as the mean ± sd. The data shown are representative of three independent experiments.
***p<0.001 as indicated by the line (one-way ANOVA with Tukey’s post-test).
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colonocytes to recover part of the energy spent in the intensive

synthesis and secretion of mucus (41). Administration of

butyrate promotes clearance of intestinal pathogen

(Citrobacter rodentium) infection by enhancing mucus

secretion (42). C. tyrobutyricum resides in the gut and has a

protective role in defending against pathogens by regulating gut

microbiota metabolites, such as butyrate (43). We evaluated the

effect of butyrate and probiotics against helminth infection along

with the effect on the level of mucus. Our results showed that

butyrate and butyrate-producing bacteria could significantly
Frontiers in Immunology 09
decrease helminth burden and promote the production of

mucus. Another study of ours found that barely b-Glucan-
triggered Akkermansia muciniphila expansion facilitates the

expulsion of intestinal helminth (10). Different sources of b-
glucan can affect different probiotics to play a role in deworming.

Therefore, targeted probiotics and related metabolite

intervention may restore a normal microenvironment for the

treatment or prevention of helminth infections.

In conclusion, these results first revealed that LNT could

promote mucus production and drive the expulsion of
B C

D

E

A

FIGURE 5

Sodium butyrate (SB) or Clostridium tyrobutyricum (C. t) reduced the burden of T. spiralis by promoting mucus production. SB (200 mg/kg) and
C.t (108 CFU/200 µL PBS) were orally administered to mice daily from -14 dpi to 7 dpi and mice (n =6 per group) were infected with 500 ML to
establish the acute infectious model. Six mice per group were sacrificed using CO2 asphyxiation at 7 dpi. The remaining mice (n=6 per group)
were sacrificed using CO2 asphyxiation and ML were recovered and counted at 35 dpi. (A) Adult worms (7 dpi) and (B) muscle larvae (35) dpi
were recovered from mice in each group and the burden of T.spiralis was calculated. (C) mRNA level of Muc2. Data are presented as the mean
± sd (n=6). (D) Periodic acid Schiff (PAS) staining (200×) of duodenal tissues (Scale bars: 50 mm). (E) Immunohistochemistry of duodenal tissues
with anti-Muc2 antibody. The data shown are representative of three independent experiments. ***p<0.001 as indicated by the line (Dunnett’s
multiple comparison following ANOVA). These figures are representative of three independent experiments.
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helminths. The butyrate-producing bacteria, C. tyrobutyricum

also reduced the burden of helminths (Figure 6). Taken

together, these findings of this study are easily implementable

strategy to facilitate expulsion of gastrointestinal helminths.
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