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Highlights  17 

 18 

- Aeromonas is an ubiquitous hydrotelluric bacterium 19 

- Aeromonas is at the interface between humans, animals and the environment 20 

- Aeromonas can be responsible for human infections following leech therapy 21 

- Aeromonas has a high level of genome plasticity and capability of acquiring genes 22 

- Aeromonas contributes to antimicrobial resistance gene dissemination 23 

 24 

  25 
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Abstract  26 

Aeromonas is at the interface of all the One Health components and represents an amazingly 27 

sound test case in the One Health approach, from economic loss in aquaculture to challenges 28 

related to antibiotic-resistant bacteria selected from the environment. In human health, 29 

infections following leech therapy is an outstanding example of such One Health challenges. 30 

Aeromonads are not only ubiquitous environmental bacteria, able to rapidly colonize and 31 

cause opportunistic infections in humans and animals, they are also capable of promoting 32 

interactions and gene exchanges between the One Health components. This makes this genus 33 

a key amplifier of genetic transfer, especially of antibiotic resistance genes. 34 

  35 
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Aeromonas in the One Health world: a ubiquitous “Jack of all trades” 36 

The genus Aeromonas belongs to the Aeromonadaceae family, which itself is part of the 37 

Aeromonadales order and Gammaproteobacteria class [1]. This genus, which currently 38 

comprises 36 species (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi), is 39 

organized in a complex of species, i.e., heterogeneous groups of closely-related species with 40 

unclear boundaries [2], as observed for other Gram-negative bacteria like Vibrio, 41 

Acinetobacter, Pseudomonas, Burkholderia, and several Enterobacterales [3]. From this 42 

complex of species, some more specialized clones may emerge [4]. Of these, the complex A. 43 

salmonicida, which is responsible for fish diseases, is to date the only species that has 44 

successfully become specialized to cause a specific disease [5]. While the primary reservoir of 45 

Aeromonas is aquatic environments and soils where it is almost always present, it is also 46 

capable of rapidly colonizing a wide range of niches and hosts [1]. Aeromonas has a notable 47 

ability to colonize the animal gut, including the guts of leeches, fish, cows and humans [6,7] 48 

as well as many other host organisms.  49 

Data from Pubmed, using close to 10,000 descriptions since 1944, 50 

(https://pubmed.ncbi.nlm.nih.gov/?term=aeromonas&sort=date&size=20) provides a biased 51 

view of this epidemiology, with >50% of Aeromonas publications linked to humans or 52 

animals including livestock, companions and wildlife. The IMNGS 16S rRNA-based 53 

metagenomic website provides a more accurate and realistic picture of Aeromonas 54 

epidemiology [8]. Aeromonas is mostly detected from water and soil samples, and is present 55 

in 20% of rhizosphere and aquatic metagenomes (Figure 1). Detection from animal samples is 56 

infrequent, except from fish gut metagenomes and, to a lesser extent, from bovine gut 57 

metagenomes [9,10]. In humans, detection remains exceptionally rare. Relative abundance 58 

data from positive metagenomes also highlights the importance of Aeromonas in hydrotelluric 59 

environments with anthropic pollution. The highest relative abundance is found in wastewater 60 
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metagenomes (Figure 1), as a partial consequence of gut-related waste. Relative abundance of 61 

Aeromonadaceae in animals is very low, below 0.1% (Figure 1). One exception is leech gut 62 

where relative abundance of Aeromonas seems very important, estimated at 36% [11].  63 

The environmental reservoir of Aeromonas allows it to be at the interface of all the One 64 

Health components (Figure 2). With its ability to produce biofilm and its large metabolic 65 

capacity that facilitates its rapid adaptation to environmental changes [12,13], Aeromonas is 66 

viable in a large range of conditions. These extended capabilities that allow Aeromonas to 67 

persist and rapidly propagate in continuously changing environments [12-17] has earned this 68 

genus the nickname of a “Jack-of-all-trades” [12]. 69 

 70 

 71 

Aeromonas in close contact with human activities 72 

Aeromonas is primarily able to develop long-term symbiotic relationships (e.g. with leeches), 73 

or to transiently colonize other animals and humans, where it can trigger cutaneous or 74 

digestive infections [16,18]. Aeromonas spp. are responsible for economic burdens of dozens 75 

of millions of dollars in aquaculture due to mortality, lost feeding days and costs associated 76 

with chemical and antibiotic therapy [19-22]. Among fish pathogens, A. salmonicida subsp. 77 

salmonicida (referred to as “typical”) is responsible for furunculosis disease in salmonids 78 

[23], while some hypervirulent clones have emerged (e.g., A. hydrophila ST251) in the catfish 79 

farming and shrimp industry  [24,25].  80 

Another Aeromonas-impacted area concerns ornamental fish that are traded worldwide (2 81 

billion/year). These exchanges occur mainly between Asian countries (the primary producer) 82 

and USA/Europe. In this industry, as observed for several years in fish farms [26,27], the 83 

misuse or overuse of antibiotics to fight bacterial diseases has selected for drug-resistant 84 

pathogens [28-30]. Recent studies underline the potential role of ornamental fish in the 85 
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dissemination of antibiotic-resistant bacteria, with possible consequences for private 86 

aquariums and human public health in importing countries [28]. 87 

Aeromonas spp. have also been isolated from a wide range of foods of both plant and animal 88 

origin [31], including minimally processed and ready-to-eat seafood products that are gaining 89 

popularity [32]. The prevalence of Aeromonas in ready-to-eat products has been estimated to 90 

be between 8 and 52%, with resistance to clinically-relevant antibiotics also emerging [33-91 

35]. This raises concerns of the potential for food spoilage and foodborne infections.  92 

Aeromonas is associated with human activities such as animal husbandry, animal slaughter 93 

[36-38], wastewater treatment [39], reclaiming irrigation water [40,41], recreational or 94 

occupational activities that are related to water exposure and those that exploit 95 

microbiological metabolic capabilities in biotechnological applications (Figure 2). These 96 

include the treatment of sewage and industrial wastewater with activated sludge that contains 97 

aeromonads at up to 2% of the total biomass [14,42]. Here, aeromonads are organized in 98 

aggregates and can resist the extreme conditions of pH, salinity, heavy metal toxicity, and 99 

temperature [14]. These aggregates are inserted in mixed species biofilms that are able to 100 

remove organic pollutants and improve both denitrification and phosphorus removal [43-45]. 101 

 102 

 103 

Human infections: by accident or by Trojan horse  104 

In humans, Aeromonas infections are primarily associated with contact with soil and/or water 105 

e.g., during recreational or occupational activities, or following road accidents [16,46]. 106 

Cutaneous, eye or digestive infections are the most frequent, although almost any type of 107 

infection is possible. Aeromonads are weak opportunistic pathogens in humans, and most 108 

infections are associated with a barrier disruption. Aeromonads can also spread from a 109 

colonized niche, typically the gut, and cause biliary or bloodstream infections notably in 110 
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immunocompromised patients [16,47]. While human infections are widely reported  through 111 

hundreds of published case reports [48], they are poorly documented compared to other 112 

bacteria, with the notable exception of natural disaster situations, when thousands of wounded 113 

individuals are exposed to contaminated waters with poor access to healthcare facilities [16]. 114 

No global study exists that compares prevalence among countries. The prevalence of 115 

bloodstream infections seems higher in Asia compared with European countries [46,49], and 116 

some species are more prevalent in tropical countries (e.g., A. dhakensis) [1]. One can expect 117 

that use of gastrointestinal syndromic tests targeting aeromonads will increase documentation 118 

and will provide a more exhaustive picture, as it was observed in this recent German study 119 

with a prevalence of 2.9% of Aeromonas sp. from 5032 stool samples [50].  120 

The particular case of healthcare-associated infections caused by ciprofloxacin-resistant 121 

aeromonads following leech therapy is an example of the One Health challenges posed by 122 

these bacteria, with resistant strains selected from the environment and spread to patients 123 

(Figure 3). Medicinal leeches may be administered to patients after orthopedic surgery or 124 

reconstructive surgery to treat venous congestion that threatens flap outcome through 125 

necrosis. This salvage treatment actively removes blood and improves outcomes, at the 126 

expense of a risk of serious wound infection leading to flap loss, amputation and sepsis. 127 

Indeed, the leech regurgitates its symbiont during bloodlettings. While the most abundant 128 

species among leech symbionts is by far A. veronii, A. hydrophila is the most frequently 129 

reported species associated with infection following leech therapy (88%) [51]. This underlines 130 

that the bacterial load during leech regurgitation is not the only factor to contribute to 131 

infection and that some yet unknown virulence factors in A. hydrophila are likely involved 132 

[52]. This risk of infection is controlled with ciprofloxacin-based prophylactic treatment 133 

[51,53]. However, since the early 2010s, several cases of infections following leech therapy 134 

were suddenly reported worldwide by aeromonads resistant to ciprofloxacin [54,55]. As 135 
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detailed in Figure 3, investigations showed that these events resulted from complex 136 

relationships between the antibiotic that disseminates in the environment, the leech microbiota 137 

where there is competition between fluoroquinolone (FQ)-resistant and FQ-susceptible 138 

bacteria, a leech trade based on a limited number of suppliers that disseminate leech with 139 

closely related FQ-resistant strains, and immunocompromised patients [52].  140 

The use of antimicrobials in a natural setting facilitates the spread of resistance markers in 141 

Aeromonas, even when used at very low-levels [56,57], and this spread may occur between 142 

distant locations through a vector and Trojan horse such as the leech. This example highlights 143 

the consequences of the selective pressure in the leech environment with subsidiary 144 

consequences to human health. Such resistance spread is not limited to FQ, with some reports 145 

recently identifying Aeromonas that harboured resistance to 3rd generation cephalosporins or 146 

cotrimoxazole, which exemplifies the capability of aeromonads to acquire diverse antibiotic 147 

resistance genes (ARGs) [55,58]. 148 

 149 

 150 

How to uptake DNA: the Swiss Army knife 151 

Bacteria of the Aeromonas genus have a 4-5 Mbp genome, which is smaller than other Gram-152 

negative bacteria like Enterobacterales or Pseudomonas. Aeromonas compensates for this 153 

relatively small genome size by its tremendous capacity to acquire several mobile genetic 154 

elements (MGE), including plasmids, transposons, genomic islands or integron gene cassettes. 155 

The core genome of these bacteria is represented by only 16% of the genes in the whole 156 

genome, with the remaining (84%) consisting of variably represented genes. This highlights 157 

the exceptional level of genome plasticity in Aeromonas due to horizontal gene transfers 158 

(HGT) both from close relatives in the genus and from several other families [13,59]. An 159 

exciting yet unanswered question is to know whether the environment shapes aeromonad 160 
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plasticity and whether their accessory genome correlates with their origin. This mobilome 161 

[60] allows for the acquisition of hundreds of antibiotic or heavy metal resistance genes, 162 

genes involved in molecular function or biological process, as well as genes encoding 163 

metabolic enzymes, transporters and bacterial defense mechanisms [59,61]. These genes 164 

enable the survival of Aeromonas in hostile environments. All known mechanisms of HGT 165 

have been described within the Aeromonas genus [62]: transformation (as most Aeromonas 166 

species are naturally competent [63,64]), transduction and conjugation. A wide variety of 167 

lysogenic phages has been described especially amongst the species A. salmonicida and A. 168 

hydrophila [65,66]. Conjugation remains the most efficient mechanism of HGT, with 169 

hundreds of conjugative plasmids identified in aeromonads. This plasmidome remains poorly 170 

characterised, with the exception of that of A. salmonicida [67]. 171 

Aeromonads are diversely equipped with the type II, III, IV and VI secretion systems (TSS) 172 

[13]. Whilst the study of these nanomachines in Aeromonas has mostly focused on their 173 

virulence properties, the T4SS and T6SS are also likely to be implicated in gene transfer, as 174 

they are typically involved in Gram-negative bacterial conjugation and transformation 175 

respectively [68,69]. For instance, competence-induced T6SS-mediated bacterial killing has 176 

been demonstrated in V. cholerae, and occurs through a complex system that involves chitin-177 

composed exoskeleton-associated-biofilms (e.g. in copepods), quorum sensing and the 178 

metabolic activity of chitinase [68,70]. Because Aeromonas shares aforementioned features 179 

with the closely-related Vibrio spp., it is conceivable that the T6SS plays a role, albeit still 180 

unravelled, in Aeromonas DNA uptake. Whatever the mechanisms involved, the lifestyle of 181 

aeromonads is associated with biofilm in sheltering organisms (e.g., copepods) that are 182 

hotspots for genetic exchanges [71]. 183 

Given its importance in human and animal health, the acquisition of ARGs is the most 184 

described event of this genetic exchange capability of Aeromonas. The genus can be 185 
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considered as a “sponge” because it can easily absorb and redistribute genes [67]. A recent in 186 

silico analysis on plasmids retrieved from Aeromonas species revealed that more than one 187 

third of plasmids carry ARGs [72]. These ARGs can affect all antibiotic families, including β-188 

lactams, with extended-spectrum β-lactamases (CTX-M, GES, VEB) and  carbapenemases 189 

(VIM, KPC, NDM-like), but also aminoglycosides, cyclins, trimethoprim, sulfonamides, FQ 190 

(with notably the qnr and qepA genes [73]) and even colistin, with the recent description of 191 

the mcr genes carried on Aeromonas plasmids [55,58,74-78]. 192 

 193 

Integrons in Aeromonas: witnesses of horizontal gene transfers?  194 

Due to the environmental location of Aeromonas and its capability to acquire multiple MGE 195 

under selective pressure, it can be expected that detection of virulence or ARGs in 196 

aeromonads could constitute potential biomarkers of anthropic pollution. Unfortunately, these 197 

genes are too diverse for this approach to be feasible. One alternative attractive possibility in 198 

the search for a unique biomarker of anthropic pollution would be to detect integrons from 199 

Aeromonas isolates. Combining a relevant microorganism capable of acquiring hundreds of 200 

genes under selective pressure (Aeromonas) and a marker of antimicrobial resistance 201 

frequently hosted by Aeromonas isolates and easy to detect (integrons) could constitute a 202 

potential interesting tool. In fact, class 1 integrons can be easily detected [79] and are now 203 

considered as a good proxy for anthropic pollution [80,81]. Integrons are non-mobile genetic 204 

elements carried by plasmids or transposons [82,83] that can carry hundreds of mobile gene 205 

cassettes, most of them involved in antimicrobial resistance. The prevalence of class 1 206 

integrons within the Aeromonas genus is difficult to determine and can greatly vary (from 7 to 207 

72%) depending on the origins of the samples [84-86]. Irrespective, their description among 208 

the Aeromonas species is frequent, as is their association with multidrug resistance, as 209 
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previously demonstrated for Enterobacterales [87,88]. Whilst gene cassettes are relatively 210 

diverse in Aeromonas [89] (Table S1), the presence of these integrons demonstrates that 211 

aeromonads readily acquire MGEs following selective pressure. 212 

 213 

 214 

Conclusions 215 

Although aeromonads are often described as possessing a significant pathogenic potential, 216 

these opportunistic pathogens seldom cause infections, and when they do, it is usually in the 217 

context of a disrupted barrier or a compromised immune system.  218 

One intriguing question is why a microorganism that bears many so-called virulence factors 219 

rarely causes infection. Understanding pathogenicity in Aeromonas remains elusive [15], with 220 

virtually all studies failing to successfully predict pathogenicity in aeromonads from the 221 

expression of  so-called virulence factors. One assumption to reconcile this paradox is that the 222 

genes that we, from a very anthropocentric analysis, consider to encode virulence factors may 223 

indeed have other primary functions. Several arguments suggest that exaptation, the process 224 

by which features acquire functions for which they were not originally adapted or selected 225 

[90], may have occurred in Aeromonas. For example, aeromonad hydrolytic enzymes are now 226 

thought to be primarily involved in essential functions of general cell metabolism [15]. 227 

Exaptation may have then changed the function of these genes during the course of 228 

evolutionary succession. Other examples of possible exaptation are mcr-3 or qnr genes, which 229 

evolved long before the synthesis and clinical use of colistin and quinolones, respectively 230 

[91,92]. A complementary hypothesis is that the multiple varied environments and organisms 231 

that aeromonads colonize act as a nursery to pre-adapt to pathogenicity, because such 232 

relationships need to overcome the innate defense of their hosts [71].  233 
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Finally, some questions also arise regarding the role of integron gene cassettes in Aeromonas. 234 

While mostly associated with ARGs, they existed even prior to the antibiotic era, and they 235 

operate as a general gene capture system. As such, they are likely to be an important factor in 236 

the more general process of HGT during the evolution of bacterial genomes and in bacterial 237 

adaptation [93], and they may contribute to shaping the plasticity, versatility and flexibility of 238 

the Aeromonas genus [67].  239 

Irrespective of the original functions in the genus and its evolutionary changes, Aeromonas to 240 

date carries all the characteristics of a potential pathogen with resistance to multiple 241 

antibiotics. Taking into account its weaponry and its lifestyles that encompass all the One 242 

Health components, aeromonads have the potential to one day emerge as more prevalent 243 

pathogens than they are currently, and to wreak havoc in the future. Therefore, it is essential 244 

that we maintain a close watch on these fascinating bacteria.  245 
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Figure 1: Prevalence of Aeromonadaceae among human, animal and environmental metagenomes.  

Figure 1A presents for the 3 compartments of the One Health world the percentage of metagenomes in which 
Aeromonadaceae are detected. This ecological distribution is based on 16S rRNA studies: grey, human 
metagenomes; yellow, fish and other animal metagenomes; blue, water metagenomes; green, soil and plant 
metagenomes. These data were obtained using the IMNGS database (http://imngs.org) [8] queried in May 
2021 using reads matching the Aeromonadaceae taxonomy. Figure 1B indicates the relative abundance of 
Aeromonadaceae retrieved for each type of positive metagenome, presented with box plots.

http://imngs.org/
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Figure 2: Aeromonas in the One Health world, a complex network of relationships. 
The figure presents the 3 parts of the One Health world where aeromonads are present: 
environment, mainly waters (blue), animals (green), human beings and related activities (light 
orange) and the compartments to which they are connected are shown with red dotted 
connectors. The intricate and complex network in which aeromonads interface the different 
compartments, mostly through waters, and in which they play a role of courier is shown with blue 
dotted lines. Flashes highlight the compartments where aeromonads contribute to disseminate 
antimicrobial resistance, dark orange specific host-bacteria interactions; beneficial relationships 
with host (e.g., human being) are highlighted in purple while detrimental relationships are yellow 
highlighted. WWTP, Wastewater treatment plant. Some parts of the figure were made with 
biorender (https://biorender.com).

https://biorender.com/


Leech colonized with
cipro-R aeromonads

Patient with cancer 
admitted at hospital

Serious skin and soft 
tissue, zoonotic, 
health care associated
infection

AMR selective pressure 
related to human activities

Competition for leech
colonization

Advantage to cipro-R strains when traces 
of quinolone in leech environment

Leech regurgitates (multi-) 
drug resistant aeromonads

Leech global trade

A B

C

D

E

F

G

Reconstructive surgery (flap), 
leech therapy and prophylactic

treatment (ciprofloxacin) 



Figure 3: the One Health perspective of aeromonad infection following leech therapy, an emblematic health 
care associated zoonotic infection caused by multi-drug resistant environmental opportunistic bacteria.
A, aeromonads are ubiquitous bacteria present primarily in waters. They usually exhibit very high rate of 
susceptibility to ciprofloxacin (green circles) [46]. B, Human activities with either misuse or overuse of 
antimicrobials, including quinolones, lead to antimicrobial selective pressure on aeromonads that can become 
resistant to ciprofloxacin (red circles). C, during leech colonization by Aeromonas, its main symbiont, 
ciprofloxacin resistant strains outcompete the susceptible strains when some trace of quinolones are present 
in the leech environment [52]. D, the leech trade is a global trade with diverse distant supplying sources, 
which allows the dissemination of bacteria from distanced parts of the world. E, patients with cancer are 
managed in hospital. F, during care pathway, cancer patients may benefit from reconstructive surgery, which 
may include flap surgery and may be associated with leech therapy to circumvent flap venous congestion. 
There is a risk of aeromonosis when leech regurgitates bacteria into the flap during bloodletting. Risk of 
infection is controlled with an antimicrobial prophylactic treatment, mainly ciprofloxacin [53]. G, because 
leeches are now frequently colonized with ciprofloxacin-resistant aeromonads, infection occurs despite 
prophylactic treatment and results in serious skin and soft tissue infection with flap loss and sepsis. Such 
event are posterior to 2010 and are regularly reported [55]. Some parts of the figure were created in 
biorender.com. Bibliometry histogram in G was obtained from Pubmed with keywords Aeromonas, leech 
therapy, infection and antimicrobial resistance. R: resistant. AMR: antimicrobial resistant. AM: antimicrobial.




