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Database of SARS-CoV-2 and 
coronaviruses kinetics relevant 
for assessing persistence in food 
processing plants
Ngoc-Du Martin Luong  1, Laurent Guillier  1 ✉, Sandra Martin-Latil2, Christophe Batejat3, 
India Leclercq3, Christine Druesne  4, Moez Sanaa1 & Estelle Chaix1

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), a virus causing severe acute respiratory 
disease in humans, emerged in late 2019. This respiratory virus can spread via aerosols, fomites, 
contaminated hands or surfaces as for other coronaviruses. Studying their persistence under different 
environmental conditions represents a key step for better understanding the virus transmission. This 
work aimed to present a reproducible procedure for collecting data of stability and inactivation kinetics 
from the scientific literature. The aim was to identify data useful for characterizing the persistence of 
viruses in the food production plants. As a result, a large dataset related to persistence on matrices 
or in liquid media under different environmental conditions is presented. This procedure, combining 
bibliographic survey, data digitalization techniques and predictive microbiological modelling, identified 
65 research articles providing 455 coronaviruses kinetics. A ranking step as well as a technical validation 
with a Gage Repeatability & Reproducibility process were performed to check the quality of the kinetics. 
All data were deposited in public repositories for future uses by other researchers.

Background & Summary
The first cases of coronaviruses disease 2019 (COVID-19) due to SARS-CoV-2 were detected in China in 
December 2019 and spread afterwards quickly around different countries from around January-February 20201. 
From the first months of viral dissemination, SARS-CoV-2 clusters were observed, in particular in occupational 
environments for several essential sectors such as health care centres2,3 or food processing plants4–7. The trans-
mission of coronaviruses among humans was reported as possibly through aerosol (inhalation of aerosolized or 
falling contaminated droplets) or through contact (hand, objects or surfaces)8,9. Infected persons (symptomatic 
or asymptomatic) can send out several contaminated droplets that could stay in aerosol, be directly inhaled or 
fall on surfaces and potentially infect afterwards other persons. However, the changes of the infectious viral load 
in the contaminated droplets susceptible to be inhaled and to induce disease are not well known in either aerosol 
or surfaces. Furthermore, the persistence of SARS-CoV-2 depends on environmental conditions that are very 
different from one occupational location to another10,11. Some factors such as airflow, ventilation, temperature 
and relative humidity modify the probability of SARS-CoV-2 transmission through respiratory pathways since 
it can affect droplet movements and virus survival, notably through droplet desiccation12. Some studies reported 
the influence of few temperature and/or relative humidity conditions. For example, the virus remains infectious 
for longer periods at lower temperatures and very high relative humidity10, metal surfaces such as stainless steel 
could allow the virus to remain infectious longer than on others under some specific temperature-humidity 
conditions13,14. Studies on coronaviruses persistence were generally conducted by experiments in laboratory 
consisting in monitoring the virus kinetics under controlled conditions. The reduction of virus infectivity over 
time could be evaluated by fitting inactivation mathematical models on experimental data. Studying the effects 
of environmental conditions encountered in food premises requires collecting kinetics data as exhaustively as 
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possible to cover large ranges of values for each condition: inert or food surfaces, temperature, relative humidity, 
experimental quantification method, virus strain etc. To our knowledge, such exhaustive kinetics dataset are not 
available yet in the literature. It should also be noted that the gathering of data between different studies is not 
easy. For example, kinetics are frequently plotted in research articles but raw data are not often provided in all of 
them as quantitative (numerical) values that can be used for further studies of theirs.

Thus, the main goal of this paper was to collect and make available the compilation of a large dataset of quan-
titative kinetics related to SARS-CoV-2 and other coronaviruses under different conditions useful for assessing 
and modelling their persistence in food processing environments.

Methods
The overall procedure for collecting and pre-treating literature data is briefly illustrated in Fig. 1. Firstly, a litera-
ture review to identify relevant publications presenting kinetics data was carried out. This research was based on 
a query of scientific bibliographical databases in accordance with the PRISMA guidelines15 (Step 1). The second 
step consisted in converting raw data from scientific publications (texts, tables or figures) into a ready-to-use 
numerical dataset with a manual collection for tables or a semi-automated collection after digitalization of fig-
ures (Step 2). Afterwards, an inactivation primary model was fitted on each kinetics to estimate the viral infec-
tivity reduction parameter and its uncertainty (Step 3). Finally, a quality-ranking step (Step 4) was performed to 
evaluate the quality of the data collected from kinetics. The quantitative dataset and the different tools used in 
this procedure are freely available and detailed in the following sub-sections.

Scoping review. The scoping review is part of a scientific project to describe the persistence of coronaviruses 
in food production environments. Firstly, a query process was carried out to identify relevant records, using 
weekly advanced searches on several topics associated with SARS-CoV-2. This weekly literature search was con-
ducted between March 2020 and 25th August 2021 using a combination of keywords related to the main thematic 
(1) “SARS-CoV-2 and coronavirus” joined by the logical connector AND with one of the following (2a) “Human 
and food”, (2b) “Water” or (2c) “Environmental persistence”. The keywords used for each theme are specified in 
Table 1. Studies were collected weekly from two bibliographic search engines PubMed and Scopus (from March 
2020 to August 2021) and by query on Frontiers (from November 2020 to August 2021). A date restriction was 
defined: only publications from the 1st of January 2020 were collected. The search was limited to publications with 
abstracts written in English. The last query process using those above-mentioned criteria performed on the 25th of 
August 2021 identified overall 14,267 references exported to EndNote software, after duplicate removal. From this 
corpus, a thematic filter about “Persistence” was built with a “from group” tools in EndNote software. This filter 
consisted in selecting articles with “persisten*” “survival” or “stability” in the field “Title–Abstract–Keywords”, 
joined by the logical connector AND with “environment*”. This search resulted in 418 references. These records 
were afterwards filtered in accordance with the PRISMA Statement guidelines15 (Fig. 2), using different inclusion/
exclusion criteria based on title, abstract and sometimes full-text when needed. The inclusion criteria were (1) 

Fig. 1 Schematic overview of the data collection workflow.

Query theme Keywords

(1) “SARS-CoV-2 and coronavirus” “sars-cov-2” OR “covid-19” OR “coronavirus” OR “corona virus” OR “2019-ncov” OR “novel coronavirus”

(2a) “Human and food”
“food” OR “bread” OR “dairy products” OR “eggs” OR “fast foods” OR “flour” OR “fruit” OR “meal” OR 
“meat” OR “raw foods” OR “salads” OR “vegetables” OR “foodborne” OR “gastrointestinal” OR “intestine” 
OR “digestive” OR “feces” OR “stool” OR “fecal” OR “clams” OR “oysters” OR “cockles” OR “mussels” OR 
“scallops” OR “molluscs” OR “bivalvia” OR “shellfish fish” OR “shellfish farming”

(2b) “Water” “seawater” OR “sea water” OR “marine” OR “wastewater” OR “water treatment plant” OR “water”

(2c) “Environmental persistence” “environment*” AND (“survival” OR “persistence”)

Table 1. Keywords used in the four themes for weekly bibliographic database queries.
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studies on persistence on materials, surfaces or aerosols or (2) studies on working environment. The exclusion cri-
teria were (1) studies on therapeutic or vaccine development, (2) studies on untreated wastewater, (3) studies on 
diet or nutrition (4) language other than English and French, and (5) full text not available. A first screening step 
identified 82 references for which full papers were read to determine if they were included as fully documented 
kinetics of persistence data (either in tables or in figures) or used to complete the identification of relevant publi-
cations (e.g. in the case of reviews). All the above screening and completion stages identified a final total number 
of 65 studies in which available raw kinetics data could be extracted from tables and/or figures.

Information associated with kinetics data. The second step consisted in converting raw data from sci-
entific publications into ready-to-use numerical dataset by extracting data from texts, tables and/or using figure 
digitalization techniques. This step provided several “kinetics”, meaning the tracking of viral titer at different 
time points under different conditions. Kinetics corresponding to viral genome quantification (e.g. by RT-qPCR 
techniques) were excluded since such quantification did not represent the viral infectivity. In total, 464 kinetics 
were available from the 65 identified studies11,13,14,16–77 (Tables 2 and 3). It is worth noting that kinetics for corona-
viruses other than SARS-CoV-2 collected in these studies were also retained for analyses.

Several information associated with the above kinetics were gathered in an Excel spreadsheet (more details 
in the Data records section). For each identified kinetics, we assigned a unique kinetics key. The virus Strains, 
Species, Subgenus and Genus were indicated for each kinetics, as well as other conditions such as the nature of 
the materials (stainless steel, plastic, paper,…), the medium (liquid media, aerosol, porous and non-porous sur-
faces), temperature and relative humidity (expressed in range and or median value), pH (if available) etc. Other 
information was also indicated for each kinetics such as the initial virus load, the type of cell used for infectious 
viral titration (Vero, etc.) or the number of experimental replicates. Table 2 provides an overview of the extracted 
kinetics from SARS-CoV-2 studies, the Table 3 from studies for other coronaviruses.

Data extraction. The persistence kinetics data were taken from texts, tables or figures in the research papers 
identified above. Data from tables or texts were manually filled into the database. Raw data from figures were 
extracted using the R package metadigitize78. This tool provided the possibility to process simultaneously many 
figures, as well as reproducibility (e.g., correcting the digitalized data, sharing digitalization). For reproducibility 
purposes, all files associated with raw digitalizations of our study are provided and detailed in the Data records 
section. The monitored time points extracted from all studies (extractions from tables or figures digitalization) 
were converted and expressed in hours in order to homogenize for comparative purposes between studies.

Viral infectivity reduction parameter. The third step aimed to estimate a parameter to characterize the 
viral infectivity reduction for each kinetics (condition). This parameter, denoted D and expressed in hour, charac-
terized the decimal log reduction time and was estimated by fitting a primary inactivation model on the extracted 
data79. The value of D corresponding to the inverse of the slope from a linear model10,71 was written as follows:

Fig. 2 Flow chart outlining the procedure for quantitative data collection from the literature based on the 
PRISMA guidelines statement and preliminary studies.
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with N0 and N corresponding to the number of infectious viruses at the initial time point and the time point t 
(expressed in hour), respectively. The model was fitted independently on each kinetics using the function nls() 
from the R package nlstools80 running with the ‘nl2sol’ algorithm from the Port library81. The starting parameter 
values necessary for the fitting algorithm was set depending on the kinetics curves or optimized using the R 
package nls282 in some rare cases of non-convergence. For each kinetics, a value of D was estimated as well as 

Standardised/Classified matrix
Temperature 
(°C) *

Relative 
humidity (%) *

Number of 
kinetics References

Dechlorinated tap water, autoclaved wastewater 4, 15, 25, 37 100 9 38

Biological specimen, Liquid culture medium 56
100 3 27

Biological specimen 65

Coated glass, Stainless, Glass 22 65 16 39

Stainless steel 24, 35 20, 40, 60 6 40

Glass, Liquid culture medium 4, 22.5, 30, 37 63, 100 8 45

Liquid culture medium 4, 22, 37, 56 100
14 14

Cotton, Glass, Mask, Paper, Plastic, Stainless steel, Wood 22 65

Food (salmon)
4, 25

N/A
4 46

Liquid culture medium 100

Biological specimen, Food (Dairy drinks; Juice/Coffee/Tea; Alcohol/
Carbonated/Health beverage), Liquid culture medium, Water 4 100 26 48

Glass, Plastic, Stainless steel 22 40 2 90

Skin 4 45 12 50

Liquid culture medium 4 100 6 51

Cotton, Latex, Mask, Plastic, Rubber, Stainless steel, Tyvek 20 37.5 8 52

Metal 4, 22, 30 35 3 53

Cardboard, Cloth, Concrete, Foam, Glass, Mask, Polyproylene, 
Rubber, Stainless steel, Tyvek 21 60, 66, 70, 75 48 54

Water 23 100 4 55

Ceramic, Glass, Mask, Latex, Cotton, Paper, Plastic, Stainless steel, 
Wood 20 N/A 9 56

Plastic 22.5, 28 40 2 58

Biological specimen
4, 21 40

6 59

27 85

Food (Dairy drinks) 5 100 1 91

Paper, Plastic 21.8 42.8 5 61

Plastic 21.9 37.4 5 62

Paper, Plastic, Foam 21.8 38.6 5 63

Leather 22 38.6 2 64

Brass, Glass, Marble, Plastic, Stainless steel 21,7 36.6 5 65

Foam, Paper, Plastic
2.4 34.5

8 66

28.6 32.6

Aluminum, Glass, Plastic 20 50 6 68

Cotton, Mask, Plastic, Polymer note, Polyester, Stainless steel, Tyvek 21.5 45 7 69

Stainless steel 19 57 3 70

Cotton, Glass, Paper, Polymer note, Stainless steel, Vinyl 20, 30, 40 50 18 71

Acrylic, Laminate, Plastic, Polyurethane, Quartz, Rubber, Vinyl, 
Stainless steel 25 47.5 14 72

Water 20 100 1 41

Water 4, 20 100 4 77

Aerosol in liquid culture medium 20.5 78 4 75

Aerosol, Cardboard, Copper, Plastic, Stainless steel 22 40 5 13

Stainless steel 7, 25 65 4 76

Plastic 20, 22, 27 40, 65, 85 9 11

Table 2. Overview of the persistence kinetics of SARS-CoV-2 on different matrices and the associated 
environmental conditions. *median values were considered if temperatures and relative humidity were given by 
ranges.
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Genus Sub-genus Virus Standardized/Classified matrix
Temperature 
(°C) *

Relative  
humidity (%) *

Number of 
kinetics Reference

Alphacoronavirus

Duvinacovirus

HCoV 229E Cotton, Polycotton, Polyester, 19 34 3 67

HCoV 229E Liquid culture medium, Plastic 23, 56, 23 100 4 18

HCoV 229E Stainless steel 7, 25 65 4 76

HCoV 229E Food (vegetables) 22 35 4 42

HCoV 229E Glass, Plastic, Stainless steel 24 50 3 43

HCoV 229E Liquid culture medium 33, 37 100 4 22

HCoV 229E Liquid culture medium 4, 22, 33, 37 100 4 32

HCoV 229E Ceramic, Glass, PVC, Rubber, Stainless, 
Teflon 21 35 6 26

HCoV 229E Liquid culture medium 37 100 3 74

HCoV 229E Water 23 100 1 30

Pedacovirus

PEDV Liquid culture medium 50 100 1 33

PEDV Liquid culture medium 48 100 9 35

PEDV Liquid culture medium 40, 44, 48 100 9 34

Tegacovirus

Alphacoronavirus 1 Plastic 4 N/A 3 57

FCoV Stainless steel 7, 25 65 4 76

FIPV Liquid culture medium 54 100 1 28

FIPV ATCC-990 Water 23 100 1 30

PRCV Liquid culture medium, Seawater, Water 20 100 3 47

TGEV Lake water, Reagent-grade water 25 100 2 21

TGEV Stainless steel 4, 20, 40 20, 50, 80 8 20

TGEV Cotton, Latex, Mask, Nitrile glove 20 50 4 44

TGEV Liquid culture medium 31, 35, 39, 43, 
47, 51, 55 100 12 19

Betacoronavirus

Embecovirus

BCoV Food (vegetables), Liquid culture 
medium 4 100 2 37

CCV Liquid culture medium 60 100 1 73

HCoV OC43 Cotton, Polycotton, Polyester 19 34 3 67

HCoV OC43 Liquid culture medium 33, 37 100 4 22

HCoV OC43 Liquid culture medium 37 100 3 74

MHV Liquid culture medium 40 100 2 73

MHV Pasteurized wastewater 25 100 1 31

MHV Lake water, Reagent-grade water 25 100 2 21

MHV Stainless steel 4, 20, 40 20, 50, 80 8 20

Sarbecovirus

MERS Liquid culture medium 56, 65 100 2 16

MERS Plastic, Stainless steel 20, 30 30, 40, 80 6 23

SARS-CoV-1

Plastic 28, 33, 38 95

7 24Dryed Plastic 23.5 45

Liquid culture medium 23.5 100

SARS-CoV-1 Glass, Liquid culture medium 4, 22.5, 30, 37 63, 100 8 45

SARS-CoV-1 Liquid culture medium 56, 65 100 2 17

SARS-CoV-1 Liquid culture medium 56 100 1 36

SARS-CoV-1
Biological specimen 4 100

9 25Biological specimen, Liquid culture 
medium 20 100

SARS-CoV-1 Glass, Liquid culture medium
22 17.5

7 29

58, 68 100

SARS-CoV-1 Aerosol, Cardboard, Copper, Plastic, 
Stainless steel 22 40 5 13

SARS-CoV-1 Liquid culture medium, Plastic 23, 56 100 6 18

Table 3. Overview of the persistence kinetics of coronaviruses (Alphacoronavirus and Betacoronavirus 
other than SARS-CoV-2) on different matrices and the associated environmental conditions. *median 
values were considered if temperatures and relative humidity were given by ranges. Abbreviations: BCoV: 
Bovine coronavirus; CCV: Canine coronavirus; FCoV: Feline coronavirus; FIPV: Feline infectious peritonitis 
virus; HCoV: Human coronavirus; MHV: Mouse hepatitis virus; MERS: Middle East respiratory syndrome 
coronavirus; PEDV: Porcine epidemic diarrhea virus; PRCV: Porcine respiratory coronavirus; SARS-CoV: 
Severe acute respiratory syndrome coronavirus; TGEV: Transmissible gastroenteritis virus.
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its uncertainty expressed by standard error value SE. The value of log10 D was computed accordingly for each 
kinetics. Finally, the coefficient of variation was calculated as the proportion: CV=SE/D.

Evaluation of kinetics quality. In this work, kinetics data were collected from different publications in 
which the laboratory experiments were not conducted with the same design. These data represented then impor-
tant variabilities, e.g. in terms of number of time points, replicates, etc. Therefore, criteria can be useful to evaluate 
and classify the quality of the collected kinetics. Indeed, the quality of raw data was susceptible to influence the 
statistical estimation of D. Criteria-based ranking approaches have been proposed in some predictive microbiol-
ogy studies aiming to deal with difficulties in terms of data selection (inclusion or exclusion for modelling)83,84. 
Herein, for the establishment of a quality score by kinetics, we considered three criteria: (i) the number of the 
time points of the kinetics; (ii) the importance of the extracted point considering if it represented a single value 
or multiple measure (i.e. at least two technical replicates); and (iii) the value of the coefficient of variation (CV) of 
the estimated value of D, characterizing the fit quality of the inactivation model. For each kinetics, we attributed 
three scores corresponding to these three criteria and classified them into different categories. It is worth noting 
that ones can arbitrarily define the threshold values separating these categories as well as the given corresponding 
score values depending on the studies and the extracted dataset. In our work, for each kinetics, the score associ-
ated with the number of time points, denoted s1, was firstly defined as follows:

s

n
n
n

n

1( 3) ,
2(4 6) ,
3(6 8) ,

4( 8) ,

t

t

t

t
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where nt corresponds to the number of time points collected from the kinetics.
The score s2, based on the importance of points (‘unique’ or ‘multiple’), was defined as follows:
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The score s3, based on the coefficient of variation CVi of the kinetics i, was given as follows:
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or s3 = 1 for some kinetics for which standard errors and coefficients of variation could not be computed (kinet-
ics with only two points).

Finally, a global score S taking into account all criteria was calculated for each kinetics:

= × + .S s s s1 2 3

The calculated scores for all kinetics are gathered in Spreadsheets and R Data objects provided in the Data 
Records section.

Data Records
Intermediate data: Figure digitalization raw files. The digitalized source figures (jpg or png image 
files) were used in the second step of the collection procedure (see Fig. 1). The digitalization were carried using 
the R package metaDigitise78 that automatically created the directory denoted ‘caldat’ containing raw digitaliza-
tion files to assure traceability and also to avoid re-doing manual digitalization at every run of the procedure. Raw 
digitalization files generated by metaDigitise were automatically renamed like their corresponding image files. All 
sources figures and digitalization raw files used herein are provided in a data repository85.

Input and output quantitative data spreadsheet. Output spreadsheets were obtained at the end of the 
overall collection procedure under the Excel and CSV file formats (see Fig. 1) (“DataRecord_OutputData.xlsx” 
and “DataRecord_OutputData.csv”).

All information reported from publications (experimental conditions, figure sources, publication references, 
DOI, etc.) related to each kinetics used as input, as well as the corresponding estimated values as described in 
the Method section (D, coefficient de variation, scores, etc.) are present85. Each row represents a kinetics, each 
column is completed, when available, by qualitative and quantitative variables, as follows:

•	 ID of each kinetics (Kinetics key), denoted for example: ‘K001’, ‘K002’, etc.;
•	 ID of each study (Study key);
•	 Studied viruses and their classification: Genus, Sub-genus, Virus, Strain;
•	 Temperature considered in the experimental design: temperatures were gathered by precise values reported 

from the publication if available (column Temperature) or by ranges (column Temperature range) in which 

https://doi.org/10.1038/s41597-022-01763-y
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case its median values were considered (e.g. 23.5 °C reported in Temperature for a range of 22–25 °C given in 
the publications);

•	 Relative humidity (columns Relative humidity and Relative humidity range) considered in the experimental 
design: as for temperatures, RH were reported as precise values and/or ranges;

•	 pH values (column pH) if available;
•	 Information related to the matrices sorted in three columns:

•	 (i) the studied matrices (Studied matrices – fully named) in as described in publications, with some details;
•	 (ii) the standardized matrices (column Standardized matrices), is a practical annotation to class similar 

matrices, such as liquid medium, stainless steel, etc.; and
•	 (iii) the medium grouping the above matrices as four classes, which are “liquid media”, “porous surface”, 

“non-porous surface” or “aerosol” (column Medium);
•	 Information related to the kinetics monitoring methods including:

•	 (i) the quantification method (column Quantification method) indicating the experimental techniques 
such as viral infectivity assays by different cell types;

•	 (ii) the used inoculum (column Inoculum) and
•	 (iii) the replicate (column Replicate) indicating if the monitored kinetics were extracted as unique time 

points or multiple ones;
•	 Sources of kinetics including

•	 the bibliographic references (column References);
•	 the name of tables or figures (column Table or Figure of the study) in the original publication where the 

kinetics raw data were transcribed or digitalized and
•	 the corresponding file names of these tables and figures (column Re-transcribed tables or digitalized 

figures) provided in Data records allowing their re-use by other researchers;
•	 Total number of points (column nb_points) extracted from each kinetics;
•	 Different estimated values for all kinetics collected in the present study as described in the Method section:

•	 (i) values of D (column Dvalues)
•	 (ii) its standard error (column Dvalues_stderr) and
•	 (iii) the coefficient of variation (column Dvalues_CV);
•	 (iv) the decimal log of D (column log10D)

•	 For some kinetics and for comparison purposes, the estimated values of log10D previously estimated using 
another modelling approach10 (column log10D_AEM);

•	 The scores given to each kinetics, including s1, s2 and s3 as well as the global score S (columns s1, s2, s3 and S, 
respectively).

Input and output as RData object. All input used and output obtained at the end of the collection work-
flow is also provided as a ready-to-use RData object (DATASET.RData)85. From this RData object, when opened 
in R/RStudio softwares, one can extract:

•	 the input and output data spreadsheet described above (object DATASET);
•	 raw data (from tables or figures) associated with the monitoring of each kinetics (measured values at each 

sampling time points), only the data above LOQ are recorded (object kinetics_rawdata);
•	 regression plots (inactivation linear model, see Method section) generated for each kinetics (object regplot). 

These regression plots were also exported as PDF files provided (output_adjusted_kinetics). The pattern of 
inactivation kinetics (increasing or decreasing) may be different depending on the unit used by the authors 
(e.g. logTCID50/ml, ( )log N

N
t

0
, viral titer reduction in percentage, etc).

Technical Validation
The technical validation focused on the figures’ digitalization step, since the latter remained a manual work that 
could probably vary from one user to another. In order to check the quality of the data collected by digitaliza-
tion, this step was re-conducted repeatedly by three independent users for evaluating its repeatability and its 
reproducibility. This checking procedure was performed on a random sample of eleven kinetics among those 
collected, and each kinetics was digitalized three times per user. The values of the parameter D were afterwards 
estimated as described in previous sections. The comparison between the values of D estimated by different users 
was firstly done by fitting the major axis regression model on bootstrap data generated for each pair of users86,87. 
Afterwards, the Gage R&R tool from the R package SixSigma88,89 was used in order to identify and quantify the 
error parts in the estimated values of log_10 D due to the user repeatability as well as the between user reproduc-
ibility, respectively. The R scripts and data associated with the technical validation procedure are provided (see 
the ‘Code Availability’ section below).

As illustration, the comparison between users (denoted user 1, 2 and 3, respectively) by major axis regres-
sion is plotted in Fig. 3 (user 1, plotted in the X-axis, was arbitrarily chosen herein as the reference one for 
comparison). The results of the Gage R&R analysis showed a good repeatability: the latter estimated a very 
low error part due to intra-user variation, estimated at only 0.01% of the overall variation. The error part due 
to the between-users variation was estimated at 1.5%. After confrontation between experimenters, this part 
of inter-users error can be explained by the difficulties for choosing the points to be digitalized. Indeed points 
below the limit of quantification (LOQ) should not be included for avoiding bias. This choice could then strongly 
influence the estimation of log10 D as illustrated in Fig. 3, since this parameter conditioned the slope of the 
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linear model fitted to the chosen data points. Yet, in many articles, the information LOQ is not provided. In 
such conditions, it is up to scientist in charge of digitalization to include/exclude points to be included. This 
is prone to introduce uncertainty especially for points corresponding to the end of the experiment. In view of 
this user-dependent choice, in the present study, we provided then all raw digitalization files that be imported, 
re-used or modified by other users if needed according to their expertise.

Usage Notes
Re-use of figure digitalization files. The digitalization step were done using the R package metaDigitise78 pro-
viding reproducible and flexible tools for tracing every digitalization. In practice, the digitalizations were done using R 
commands (check the R scripts provided in the Code Availability section) allowing users to process the different image 
files ready-to-digitalize. This process consisted, for each image (plot), to click manually on the different chosen points 
of the image to calibrate the plotted axes and convert afterwards the different clicked points (from curves, barplots, 
etc.) to numerical values saved in R object. The different groups of points can be assigned with user-defined group 
names in order to separate different kinetics from the same image if necessary. For each digitalized image, a digitaliza-
tion file is automatically generated in a specific directory, denoted ‘caldat’ to ensure the traceability of this manual step. 
Indeed, such a file can give the possibility, using R commands, to import the numerical values already digitalized and/
or edit/recalibrate some values/points by other users if needed without having to re-process the whole image .

Fig. 3 Illustration - Comparison of the D values estimated by different users performing repeatedly the figure 
digitalization step on the same subset of kinetics.

Fig. 4 Detailed schema of the data collection procedure including the used R scripts and data records files.

https://doi.org/10.1038/s41597-022-01763-y
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Code availability
All data records files and R scripts used for the data collection procedure are schematized in Fig. 4 and available at 
online repositories85: https://github.com/lguillier/SACADA_Database and https://zenodo.org/record/6572948#.
YouM3ajP3tR.

The database (bibliographic references) was also extracted as RIS and BIB files for open-source software.

Received: 27 May 2022; Accepted: 10 October 2022;
Published: xx xx xxxx
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