

Occurrence of IS6110 copies in genomes of field strains of Mycobacterium bovis revealed high disparity among genetic family

Ciriac Charles, Lorraine Michelet, Cyril Conde, Franck Biet, Maria-laura

Boschiroli

▶ To cite this version:

Ciriac Charles, Lorraine Michelet, Cyril Conde, Franck Biet, Maria-laura Boschiroli. Occurrence of IS6110 copies in genomes of field strains of Mycobacterium bovis revealed high disparity among genetic family. 7th International conference on Mycobacterium bovis, Jun 2022, Galway, Ireland. anses-03947254

HAL Id: anses-03947254 https://anses.hal.science/anses-03947254

Submitted on 19 Jan2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

OCCURRENCE OF IS6110 COPIES IN GENOMES OF FIELD STRAINS OF MYCOBACTERIUM BOVIS REVEALED HIGH DISPARITY AMONG GENETIC FAMILY

CHARLES Ciriac^{1,2}, MICHELET Lorraine¹, CONDE Cyril², BIET Franck² and BOSCHIROLI Maria-Laura¹

¹ Anses Maisons-Alfort, Unité des Zoonoses Bactériennes. ² INRAE Nouzilly Infectiologie et Santé Publique. / Contact: ciriac.charles@anses.fr

IS6110 is an insertion sequence found in the *Mycobacterium tuberculosis* complex (MTBC), with **an important role in genome plasticity and in bacterium evolution**. Within the MTBC, *Mycobacterium bovis (M. bovis)* had largely been considered as possessing **one or very few copies** of IS6110 (1). However, we showed by complete genome sequencing, that *M. bovis* **Mb3601** (2), a strain with a widespread genotype from the bTB endemic region of Côte d'Or (Figure 1), possesses **eleven copies of IS6110**.

F4 family

GOAL OF THE STUDY

We therefore studied if i) other French *M. bovis* strains present this IS6110 high-copy number trait and ii) there is any **evolution of the number** and **location** of IS6110 in the genomes over time and depending on the infected animal species on sympatric strains of Dordogne Haute-Vienne, the French region with more bTB outbreaks, with a specific genotype, SB0120-DHV.

MATERIALS AND METHODS

ISMapper (version 2.0.1) (3) was used for identification of IS6110 on Illumina genomes using Mb3601 as reference on:

- Panel 1: **80** *M. bovis* genomes of French representative genotypes (4) (Figure 1). - Panel 2: **227** *M. bovis* SB0120-DHV sympatric strains issued from wild and

domestic animals (183 cattle, 26 badger, 12 wildboar, 3 fox, 2 deer and 1 roe deer) between 2001 and 2017 (Figure 2).

IS6110 IN THE *M. BOVIS* FRENCH DIVERSITY

- A third of the strains in our sample are IS6110 multi-copy; 10% present more than 6 copies (Figure 1).
- These strains with the highest IS6110 copy numbers are those circulating in the most bTB affected regions like Côte d'Or (SB0120-CO) or Dordogne Haute-Vienne (SB0120-DHV) in last years (5-6) and are defined by a monophyletic clade in the tree (Figure 1).
- IS6110 copy numbers also correlates with clonal group definition, as several genomes of the same clade present the same or very similar IS6110 copy numbers (the F4 family and the previously mentioned groups) (Figure 1).
- **58** insertions sites were identified on Panel 1. Five of them are shared by 5 or more strains; they are either specific to a clonal group (insertion site 1) or shared by several clonal groups (Table 1). Some genes interrupted by IS*6110* could play a role in bacteria phenotype.

Table 1: Representation of IS6110 site with their gene environment. Genomic positions were deduced through ISMapper analysis. Surrounding genes of these insertion sites were identified based on Mb3601 reference to determine orthologous genomic sites of the IS using eggnog 5.0.

SB0120-CO	genomie sites of the	is using eggno	y 5.0.							
SB0120-DHV	Locus	Gene in 5' of insertion site	Gene interrupted by IS <i>6110</i>	Gene in 3' of insertion site	Product interrupted by IS <i>6110</i>	Number of strains with this insertion	Group with this insertion			
	1-Mb3601_IS_locus	MBS3601_RS02 045	MBS3601_RS02 050	MBS3601_RS02 055	hyaluronidase/chondr osulfatase	10	Cluster A/F4 family			
	19-Mb3601_IS_locus*	MBS3601_RS09 095	MBS3601_RS09 100	MBS3601_RS09 105	Phospholipase D	7	Cluster I/EU3, C/SB0134 and F/EU2			
	33-Mb3601_IS_locus*	MBS3601_RS10 480	MBS3601_RS10 485	MBS3601_RS10 490	DNA repair helicase	12	Cluster I/EU3 and A/F4 family			
	43-Mb3601_IS_locus	MBS3601_RS14 500	MBS3601_RS14 505	MBS3601_RS14 510	IS <i>6110</i> present in Mb3601	79	All group			
vas inferred by	50-Mb3601_IS_locus	MBS3601_RS17 200	MBS3601_RS17 205	MBS3601_RS17 210	IS <i>6110</i> present in Mb3601	7	Cluster I/EU3, A/ F4 family and F/EU2			

Fig 1 Heatmap showing the presence and genomic position of IS6110 copies in genomes of French strains. The evolutionary history was inferred by using the Maximum Likelihood method (Hasegawa-Kishino-Yano model) based on 8981 wgSNP of 81 genomes (80 genomes of Mycobacterium bovis representing French diversity (4) and Mb3601 reference strains (2)). The strains are grouped in 7 clusters which have been previously defined (4). The unrooted tree is drawn to scale, with branch lengths measured in the number of substitutions per site.

227 SB0120-DHV strains + Mb3601																																																																	
IS6110 sit	2001	2003 2004	2005		2006			2006			2006			2006					2006		2006			2006			2006			2006			2006			2006				2008	2009	2010		2011	2012		2013			2014		2015			2016	2016	2017								
1 2 3 4 5 6																																																																	
7 8 9 10 11 12																																																																	
13 14 15 16 17 18																																																																	
19 20 21 22 23																																																																	
24 25 26 27 28 29																																																																	
30 31 32 33 34																																																																	
35 36 37 38 39																																																																	

* Several different insertion site in a same locus

Unknown function Replication, recombination and repair

Cell wall/membrane/envelope biogenesis Intracellular trafficking, secretion, and vesicular transport Pseudogene

SYMPATRIC SB0120-DHV STRAINS

 SB0120-DHV strains have a strong stability of the IS6110 copy number, with an average of 12 copies. Among the 56 insertion sites on Panel 2, 11 were identified in almost all SB0120-DHV strains (Figure 2). Only two sites are common between SB0120-DHV and Mb3601 (SB0120-CO).

These strains have a high recurrence of their genomic position over the time and

Fig 3 Heatmap showing the presence or absence of IS6110 in sympatric S0120-DHV strains. M. bovis strains are presented by year of isolation. Illumina reads are mapped in Mb3601 reference genome which is shown in purple. Black squares show the presence of IS6110 in a specific site. The last line of the figure present the different host species of these SB0120-DHV strains (cattle, badger, wildboar, deer, roe deer and fox).

CONCLUSIONS

The current epidemiologically **most successful** *M. bovis* **strains in France** have **high number of IS6110**. This striking correlation make us wonder if it could be the consequence of phenotypic modifications favouring dissemination-infection due to the genetic changes provoked by IS6110 transposition. More-in-depth analysis of the complete genome of these strains and the consequences of genetic modifications introduced by IS6110 transposition would be required to evaluate this hypothesis. Further analyses on SB0120-DHV strains shows that the copy number and the localization of IS6110 is **very stable in time** and **between host species**, suggesting that host adaptation through IS6110-linked changes does not seem to have taken place (1) at least during the strain collection period.

independently of the animal species (Figure 2).

This stability was also observed in two other panels of SB0120-CO and F4 family multi-copy strains (data not shown).

(1) Gonzalo Ascensio J et al PLoS Genetics, 2018
(2) Branger M et al Genetics and Evolution 2020
(3) Hawkey J et al BMC Genomics 2015
(4) Hauer et al Front Microbiol 2019
(5) Delavenne et al Bulletin épidémiologique 2019
(6) Delavenne et al Bulletin épidémiologique 2022

REFERENCES