ne HEALTH COHESIVE	B.canis in Europe	
	COHESIVE/IDEMBRU	
	Grant Agreement number 773830	IDEM

Canine Brucellosis: an emerging threat in Europe

Ponsart C, Fontbonne A

France - EU/WOAH \& National Reference Laboratory for Brucellosis, Animal Health Laboratory, Paris-Est University|ANSES
enVA - Unite de Medecine, de l’Elevage et du Sport (UMES)

Main goal: Raising awareness of vets on canine

 brucellosis to limit dissemination of the disease in Europe27 ${ }^{\text {th }}$ EMERGING RISKS EXCHANGE NETWORK MEETING (EREN)

Vienna Austria (and online streaming) Briefing Note on Emerging Issues ${ }^{1}$

Emergence of canine brucellosis due to infection with Brucella canis in different European countries (IDOxxx) ${ }^{2}$

Author: Ponsart C ${ }^{1}$, De Massis F^{2}, Ferreira AC ${ }^{3}$, Koets A^{4}, Lahti E E ${ }^{5}$, Mc
 GIVENT, SACCHINIF'

In the framework of the IDEMBRU project = TOOLKIT for emerging Brucella

Adapted from the Webinar prepared for French vets, presented in July \& September 2022 by C. Ponsart / A. Fontbonne Replay : https://vimeo.com/733219390

1. Introduction: why is it important to investigate canine brucellosis?

2. Diagnostic
3. Conclusions
4. Epidemiology in Europe

5. Treatment / Prevention
6. Clinical signs, transmission routes

7. Feedback on confirmed cases

1.Introduction: why is it important to consider canine brucellosis?

Brucellosis is a worldwide zoonosis

- In animal: reproductive troubles (abortions), arthritis...
- In human: undulant fever, chronical affections

6 classical species with host preferences

- 2 types of polysaccharide (O-PS)
\rightarrow Smooth (abortus, melitensis, suis) vs
Rough phenotype (ovis, canis, vaccine strain RB51)
\rightarrow Brucella canis: first identified in 1966 (USA, beagles)

-Smooth vs Rough species: different serological tests, Rough considered less virulent
-B. canis : rare detected human cases (no validated serological tests for human brucellosis)

Smooth

B. abortus (Bovinae), B. melitensis (small ruminants), B. suis (Suidae)

B. canis (the most frequent infection in dogs)

Rough

Transboundary and
 Emerging Diseases

Short Communication
Isolation of Brucella abortus from a Dog and a Cat Confirms their Biological Role in Re-emergence and Dissemination of Bovine Brucellosis on Dairy Farms
G. Wareth F. Melzer, M. El-Diasty, G. Schmoock, E. Elbauomy, N. Abdel-Hamid, A. Sayour, H. Neubauer

First published: 15 June 2016 | https://doi.org/10.1111/tbed. 12535 | Citations: 35

Emergence of Brucella suis in dogs in New South Wales, Australia: clinical findings and implications for zoonotic transmission.

Mor SM ${ }^{1}{ }^{\oplus} \oplus$, Wiethoelter AK ${ }^{1 \oplus}$, Lee A^{2}, Moloney $B^{3} \oplus$, James DR ${ }^{4}$, Malik R^{1}

EMERGING INFECTIOUS DISEASES

Emerg Infect Dis. 2018 Jun; 24(6): 1127-1129 doi: 10.3201/eid2406.171887

Brucella suis Infection in Dog Fed Raw Meat, the Netherlands

Enva
>19 reported human cases with B. canis (bacteria isolated from blood)
\rightarrow rare infection in humans (HAIRS, 2021; HSCP, 2022)
> https://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=1195

Human Animal Infection and Risk Surveillance Group
Risk review and statement on the risk Risk review and statement on the risk
Brucella canis presents to the UK human population population
> Risk review and statement on the risk Brucella canis presents to the UK human population (publishing.service.gov.uk)
B. canis : rare human cases, but no validated serological test
>2022: 2 recent confirmed cases in Netherlands + UK

- dog breeder, 55 years-old, with recent history of B. canis in the kennel
!! At-risk practices = resuscitation of puppies at birth !!
> dog breeder, 61 years-old, with recent history of abortion (following importation of pregnant female dog from Bielarus)
!! Immunodepressed, chills, shivers, severe headaches, 2 weeks at hospital, lost 9 kg !!

ne
 НЁaie

- Human brucellosis : same clinical manifestations associated with other Brucella spp. Infections = unspecific symptoms (intermittent fever, chills, sweating, loss of appetite, weight loss, fatigue, headaches, back pain or joint pain)
- Contact with joint, bodily fluids and tissue from infected dogs may present a risk of human exposure to B. canis (HAIRS, 2021 ; HCSP, 2022)
- Exposure = direct contact with body fluids, on damaged or mucous skin or by the respiratory route
- At-Risk situations: birth, obstetric surgery, cleaning, birth or abortion products, semen collection, joint injury surgery, on a positive or highly suspect animal ...
- Prevention \rightarrow general hygiene measures (wearing gloves, hand hygiene, cleaning litter boxes) or even wearing a FFP2 mask in a risky situation + Clinical surveillance to be put in place / National guidelines

Santos et al, 2021
doi:10.1016/j.cvsm.2011.08.001

Epidemiology in Europe

Worldwide situation

Canine Brucellosis: An Update

Renato L. Santos ${ }^{\text {", }}$, Tayse D. Souza ${ }^{1}$, Juliana P. S. Mol', Camila Eckstein ${ }^{1}$ and
Tatiane A. Paixão ${ }^{2}$
 selo Horizonte, Brazi

Blog
Government Vets
Organisations: Civil Service

World Zoonoses Day - How you can help protect our dogs from Brucella canis

First Isolation of Brucella canis from a breeding kennel in Italy

Transboundary Spread of Brucella canis through Import of Infected Dogs, the Netherlands, November 2016-December 2018 Marloes A.M. van Dijk, Marc Y. Engelsma, Vanessa X.N. Visser, Ingrid Keur. Marollijn E. Holtslag.,
Nicole Willems, Biom P. Meil. Peter T.J. Willemsen, Jaap A. Wagenaar. Hendrik. I.J. Roest'. Els M. Broens'
« VUITTON » = American bully male, imported from USA to France / EU for breeding \rightarrow B. canis isolated from semen (2020)

L'identification récente d'un cas de brucellose canine en élevage canin impose de ne pas l'oublier

Me survey

 Sci. 6:151. doi: 10.3389/fvets.2019.00151(A) Positive PCR for 3,7\% of samples (61/1657)

(B) Samples with Brucella canis antibodies from 13 European countries (Sweden, Belgium, Austria, Switzerland, Italy, Finland, Germany, Denmark, Hungary, Norway, Poland, France, Netherlands).

- Brucella canis antibodies identified in 5.4% of samples (150/2,764).

FIGURE 1 | (A) Results of Brucella spp. PCR $(n=1,657)$ and (B) B. canis antibody testing ($n=2,764$) in a veterinary diagnostic laboratory. Maps reflect preference to use PCR (\mathbf{A}) or antibody tests (B) in respective countries. B. suis may not be recognized. Sample sizes and confidence intervals ($\mathrm{Cl}_{95 \%}$) for each country are
described in Tables 2, 3.

UK (2017) - 2 cases
Imports from Romania Lumbosacral diskospondylitis, B. canis isolated from blood 2020-21 : 87 cases 2022-First human case

The NL (2016-2018) - investigations in imported dogs

(Romania, Eastern Europe)

10 notified seropositive cases and 8 littermates $\rightarrow 14$ (78\%)
had musculoskeletal disease (lameness and neck or back pain; discospondylitis diagnosed in 11).
2022 - First human case

France (ANSES, pers. com) - Since 2020: 20 dogs infected and confirmed positive (11 females, 8 males, 1 aborted puppy - from 5 month to 4 years - With and without symptoms)

- 8 kennels : see table

Portugal (INIAV, pers. com) 2018-2019: 2 kennels with seropositive results ($9 / 16,56 \%$) + PCR positive puppies

Spain (Buhmann et al., 2019)
11.1% of submitted samples presented positive PCR results

Ongoing situation

Sweden (E. Lahti, pers. com) Cluster in 2020 ; male imported from the NL, with links to Mexico

Poland (Buhmann et al., 2019)
6.7% of submitted samples
presented positive PCR results

Ukraine

(2020) 3-y old male Labrador
retriever, orchitis and epididymitis
Germany (Buhmann et al., 2019) 4 young (7 to $30-\mathrm{mo}$ old) female dogs with discospondylitis Imports from Macedonia, Moldavia, Romania

Switzerland

(2019) 21-mo old male with epididymitis and orchitis - imported from Germany
(2018) 1 kennel

Dissemination through COVID, trade, imports...

\square Online purchase + COVID19 = introduction risk 7

Countries (ordered by 2020 total dog import numbers	2020* total consignments	$\mathbf{2 0 2 0}^{\star}$ total dogs	\% change in dog import numbers 2019 to 2020
Romania	21,776	29,348	$+51 \%$
Spain	4,547	5,723	$+17 \%$
Ireland	2,681	5,566	-24%
Hungary	3,325	4,583	$+114 \%$
Cyprus	3,857	3,914	$+13 \%$
Poland	2,861	3,452	$+198 \%$
United States	772	1,458	-44%
Bosnia \& Herzegovina	122	1,323	$+660 \%$
Russian Federation	377	615	$+779 \%$
Greece	332	550	$+87 \%$

'People are now having some more time to settle pets into their home, says Battersea Dogs and Cats Home

Dogs imported into Finland may bring along new infectious diseases

June 19/2019

The number of dogs imported into Finland has increased in the recent years. The import of dogs from countries with a different disease situation than Finland can contribute to the spread of diseases also in Finland as well as their formation as a permanent problem. Some conditions...

Vets and dog owners are aware of the situation and communication is ongoing in several countries

3. Clinical signs, transmission routes

-Through mucous membranes: conjunctival, oro-nasal contamination
-Venereal transmission appears to be secondary

Transmission routes:

Infectious dose:

- Oral route: minimum 2×10^{6} organisms $/ \mathrm{mL}$
-Conjunctival route: 10^{4} to 10^{5} organisms/mL

Aerosol transmission is possible (common?)
\rightarrow Important dissemination within kennels

Hinity Aborted fetuses and vulvar discharge

- Up to 10^{10} bacteria/mL
-500 infectious doses/mL

- Following an abortion, vulvar discharge can remain contaminating for 4 to 6 weeks

« Vulvar discharge is probably the main route of transmission of the disease »

Carmichael and Kenney 1970

上inisp Aborted fetuses and vulvar discharge

- Up to 10^{10} bacteria/mL
-500 infectious doses/mL

- Following an abortion, vulvar discharge can remain contaminating for 4 to 6 weeks

Semen

- High bacterial load in the first 8 weeks post-infection
\checkmark Semen can be contaminated intermittently for several years

- 6 males experimentally infected and 2 males naturally infected
-Weekly collection: urine and blood
- Excretion of B. canis in urine: starting 4 to 8 weeks after inoculation
- Duration of B. canis excretion in urine: 1 to 1.5 years
- Period of high contamination with B. canis in the urine in all dogs:
$\checkmark 6$ to 14 weeks post infection
anses
- Possible but secondary source of contamination?
- Experimental infection of males and females
\checkmark B. canis isolated:
- In the urine of $1 / 6$ females and $5 / 10$ males
-Low bacterial load in urine but up to a dose of $10^{6} / \mathrm{mL}$

Serikawa et Muraguchi 1979

Increased risk of contamination through the urine of male dogs?

- Possible but secondary source of contamination?
- Experimental infection of males and females
\checkmark B. canis isolated:
- In the urine of $1 / 6$ females and $5 / 10$ males
- Low bacterial load in urine but up to a dose of $10^{6} / \mathrm{mL}$
-High bacterial load: uterus, epididymis, prostate
- Housing of 5 puppies with infected adults
\rightarrow Only 1 infected puppy

- Outdoor space, boxes, bowls:
\checkmark Likely role in disease spread within a kennel

- B. canis can survive up to 2 months in the environment with cool temperatures and in the presence of organic waste

Carmichael and Greene 2012 \checkmark Up to 4 months in moist soil

- Sensitive to conventional disinfectants:
\checkmark Quaternary ammoniums, bleach, glutaraldehyde
- Eye or nasal secretions / Saliva:
\checkmark Rare but possible contamination
Carmichael and Joubert 1987
- Milk: high bacterial load Wanke 2004
- Feces Weber and Christoph 1982
- Insects/Ticks

- Transfusions
- Other sources: syringes, speculums, insemination equipment, endoscopes...
- Knowledge about neonatal canine brucellosis is limited
- One case in New-York
\checkmark Contamination of a 3-year-old child by a Yorshire male puppy

Human Brucella canis Infection and Subsequent Laboratory Exposures Associated with a Puppy, New York City, 2012
 C. M. Dentinger ${ }^{1,2}$, K. Jacob ${ }^{3}$, L. V. Lee ${ }^{1}$, H. A. Mendez ${ }^{3}$, K. Chotikanatis ${ }^{3}$, P. L. McDonough ${ }^{4}$,
 D. M. Chico ${ }^{5}$, B. K. De ${ }^{6}$, R. V. Tiller ${ }^{6}$, R. M. Traxler ${ }^{6}$, E. R. Campagnolo ${ }^{2,7}$, D. Schmitt ${ }^{8}$, M. A. Guerra ${ }^{6}$ and S. A. Slavinski ${ }^{1}$

\rightarrow In newborn puppies, B. canis infects the epithelial cells of the renal tubules

What about sterilized dogs?

, ine
$\underset{\text { HEALTMERU }}{\text { HEAP }}$

Clinical signs

\checkmark Fever rarely present
\checkmark Fatigability
\checkmark Poor general condition

- Unspecific symptoms:
\checkmark Lymphadenitis
\checkmark Follicular hyperplasia of the spleen / Hepatitis
\checkmark Discospondylitis / Vertebral osteomyelitis / Lameness
\checkmark Polygranulomatous dermatitis
\checkmark Meningitis / Meningoencephalomyelitis
\checkmark Endocarditis
\checkmark Uveitis

Courtesy Dr Jeremy Mortier ENVA

ne HEALTHE
 Genital symptoms

anses
-In female dogs:
-Interruption of gestation:
\checkmark In particular, embryonic resorption

-Abortion
\checkmark Especially between D45 and D55
\checkmark Aborted fetuses look often autolyzed

- Neonatal mortality \checkmark Survival is possible
anses

Box 1

Puppies

Keep in mind that your clinic may be presented with

- Pups born to infected female dogs
- Pups born in infected facilities
- Pups may die shortly after birth due to disease
- Pups may seem healthy but they are infected

- Infected dogs shed B canis bacteria for several months
- Infected dogs can infect other dogs and humans
- Infected pups become clinically affected after puberty
- Pups should be tested for B canis; discuss culling any pups that test positive

Genital symptoms

-Male dogs:
-Epididymitis:
Kauffman et Petersen 2012
-Leukocytospermia/teratospermia
-Spermatozoïd agglutination
-Prostatitis
-Rarely:

Rapid alteration of the spermogram

- Orchitis
-Testicular necrosis and ulcerative scrotal dermatitis
Schoeb et Morton 1978
-Male dogs:
-Epididymitis:
-Leukocytospermia/teratospermia -Spermatozoïd agglutination
-Prostatitis
-Rarely: Many
- Orchit
-Testicular necrosis and ulcerative scrotal dermatitis
Schoeb et Morton 1978

(290 Enva
anses

4. Diagnosis: screening, confirmation, management options

Screening and confirmation of canine brucellosis: main tools available
$>$ 1-SEROLOGY = indirect diagnostic: detection of antibodies to Brucella canis (or B. ovis), false positive/or infected seronegative dogs
$>$ DRY TUBE: centrifugation after sampling to obtain the serum; serum can be sent at room temperature or frozen if delayed shipment
$>$ Rapid kit (immunochromatographic test ; https://www.kitvia.com/tests-rapides)
\rightarrow useful for screening (vets or laboratories offering B. canis serology)

Brucella canine Ac
Test immunochromatographique pour la détection des anticorps anti-Brucella canis
Echantillon

Sang total,
Plasma, Sérum

Résultat

20 min
Condit.
1×10
Référence
B7TRRB2103

Serology:

+ useful for screening and monitoring animals, repeated samples every 4 to 6 weeks, less expensive tests, evolution of antibody titers
- : false positives, infected seronegative animals

Screening and confirmation of canine brucellosis: main tools available

> 2-Direct diagnostic: isolation of Brucella canis or DNA detection
> BACTERIOLOGY: Reference method, allows genotyping of strains (surveillance), but not very sensitive, long (> 10 days)
> MOLECULAR BIOLOGY: Detection of Brucella spp. specific DNA
(no species identification; protocols not standardized)
$>$ MALDI-TOF-MS : Identification by mass spectrometry of the genus Brucella (or Ochrobactrum) / libraries not specific enough for rough species of Brucella

Direct diagnosis: + useful for confirmation of infection (animals with symptoms, or animals without seropositive symptoms), genotyping and strain surveillance

- : not very sensitive = a negative result does not mean that the animal is free of disease; detection limit for PCR; identification errors by MALDI-TOF

ne Screening and confirmation of canine brucellosis: main tools available

> 2-Direct diagnostic: isolation of Brucella canis or DNA detection
> Samples to be frozen as soon as possible if no immediate shipment
> Regulatory triple packaging $=$ UN3373

> Vaginal swab (E-Swab 480C, COPAN) : following abortion or stillbirth or at the time of heat
$>$ Whole blood (citrate tube), !! Do not use EDTA or heparin = problems of inhibition !!
> Abortion tissues or stillborn puppies, genital tissue if castration + as appropriate $=$ urine, semen, milk.. Multiple samples $=\Pi$ sensitivity

Practical strategy of diagnosis
Enva
anses

Situation	Serological screening	Samples for direct diagnostic	Further investigations
Dog with symptoms suggestive of brucellosis	Yes (B. canis tests) + EAT/ELISA if risk of infection with smooth Brucella)	Yes (depending on lesions / symptoms)	If necessary, repeat samples to isolate the bacteria
Asymptomatic dog	Yes (Rapid test)	No	If seropositive, add samples for direct diagnosis (whole blood, swabs, urine, semen)

Micro Aglutination Test

Bacteriology

Molecular biology

How to manage infected kennels?

anses

In a kennel, seropositive dogs should be isolated
If one or more seropositive results, all dogs must be screened
Stop breeding \& trade during the control period (>6 mo)

Avantages Limits

No risk of transmission.
No use of ineffective AB. Ethical/emotional issues
Protection of other dogs.
Decrease in symptoms.

Neutering and AB treatment

Reduction of excretion (at least temporary).

Risk of relapse and transmission: $A B$ do not cure all animals. Use of AB for several weeks (toxicity to be followed) + lifetime follow-up (serology, 1-2 times/year)
The animal must be isolated from other dogs and must be followed for life (placement, informed consent)

5. Treatment / Prevention

Recommended Drugs in Combination Therapy for Canine Brucellosis ${ }^{\text {a }}$				
Drug ${ }^{\text {b }}$	Dose ${ }^{\text {e }}$ (mg/kg)	Route	Interval (hours)	Duration (weeks)
TETRACYCLINES				
Minocycline or Doxycycline ${ }^{\text {dee }}$				
No ocular infection	$\begin{aligned} & 25 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { PO } \end{aligned}$	$\begin{aligned} & 24 \\ & 12 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
Ocular infection	15	PO	12	8
Tetracycline ${ }^{\text {a }}$	30	PO	12	4
AMINOGLYCOSIDES				
Streptomycin ${ }^{\text {ax }}$.				
No ocular signs	20	IM	24	2 (treatment weeks 1 and 4)
Ocular infection	20	IM	24	4 (treatment weeks 1, 3, 5, 7)
Diliydrostreptomycin ${ }^{\text {a/e }}$	10	IM, SC	12	2 (treatment weeks 1 and 4)
	20	IM, SC	24	2 (treatment weeks 1 and 4)
Gentamicin	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{IM}, \mathrm{SC} \\ & \mathrm{IM}, \mathrm{SC} \end{aligned}$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	2 (treatrnent weeks 1 and 4) 2 (treatrment weeks 1 and 4)
QUINOLONES				
Enrofloxacin'				
No ocular infection Ocular infection	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { PO } \end{aligned}$	$\begin{gathered} 12-24 \\ 24 \end{gathered}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$
ADDITIONAL DRUGS USED ONLY WITH OCULAR INFECTION				
Rifampin ${ }^{9}$	7.5	PO	24	pm
Prednisone Acetate (1\%)	1 drop	Topical in eye	6-8	pm
Atropine Ointment	pm	Topical in eye	12	pm

Sykes, Jane E., and Craig E. Greene. Infectious diseases of the dog and cat. Elsevier Health Sciences, 2013

Prevention?

HEALTHEJP

Prevention

- No vaccine
- Protection of non-infected kennels:
-Introduction of dogs:
\checkmark quarantine of at least 6 to 8 weeks

veterinaire-vanhoeck.be
\checkmark serological test at introduction and at 6 weeks post-introduction
- Breeding dogs:
- Test regularly, especially males (2 times/year?)
- Test any dog (male / female) with a reproductive disorder

HEATHEJP anses
.
\qquad

HEATHEJP

HEALTHEJP

-

電

HEALTHEJP
-

- 20

.

-

Since 2020:
20 infected dogs confirmed
11 females, 8 males, 1 aborted puppy
from 5 months to 4 years
With or without symptoms
Several imports from Bulgaria, Romania, Russia, Belarus, United States

8 infected kennels $\rightarrow 3$ in 2021, 5 in $2022+1$ under investigation

~1000 serological samples tested : rapid tests or plate agglutination test (MAT, follow-up) 199 positive results with LFIA (16 \%) ; 290 positive results with MAT (27 \%)

Mno A wide variety of cases and situations Enva

Kennel	Nb of dogs tested	Nb of tests performed	Nb of seropositive dogs (LFIA or MAT)	Related information
1	23	23 (2 series)	4 (17,4 \%, LFIA)	Imported from Russia, abortion, 1 infected dog
2	15	33 (3 series)	3 (20\%, LFIA)	Imported from Russia, abortion, 2 infected dogs
3	26	46 (5 series)	5 (19,2 \%, LFIA)	Imported from Russia, abortion, asymptomatic male, more than 3 infected dogs
4	70	70 (4 series)	9 (12,9 \%, MAT)	Links with a German kennel, abortion
5	32	52 (2 series)	13 (40,6 \%, MAT)	Abortion

Pregnant dog imported from Russia (or Belarus) as breeding female imported in November 2021 from Russia, isolated upon arrival to comply with quarantine

Abortion 15 days after arrival \rightarrow abortion sent for analysis, B. canis strain isolated \rightarrow euthanasia
\rightarrow 1st series of tests on all dogs in the kennel $\rightarrow \mathbf{3}$ weakly positive dogs, isolated.
\rightarrow Treatment according to Cosford (2018): gentamicin ($5 \mathrm{mg} / \mathrm{kg}$; for 3 days) and doxycycline (2 months at $10 \mathrm{mg} / \mathrm{kg}$).
$\rightarrow \mathbf{2}$ dogs out of the $\mathbf{3}$ developed acute renal failure (one died in anuria, the other recovered) \rightarrow Pharmacovigilance triggered.

Regular serological follow-up (negative results)

7. Collective work in progress

Hene Collective work to produce a white paper + TOOLKIT

- Projects-One Health EJP
- $15 \mathrm{MS}+\mathrm{UK}$

B.canis in Europe

COHESIVE/IDEMBRU

Grant Agreement number 773830

- Two workshops organised in 2021-2022
> State of the art + Gap analysis
$>$ Focus on epidemiology, transmission, diagnostic, treatment, regulation
$>$ Scenarios under progress \rightarrow measures in the form of White Paper + TOOLKIT

HEALTHE Conclusions

- High soundness: emerging cases in all Europe
- More than 3000 dogs exposed since 2020
- Increased risk in dogs => increased exposure of pets owners

- Two first human cases in Europe (NL, UK)
- Severe clinical signs in infected dogs, pain, repeated $A B$ treatments
- High risk of dissemination within and between kennels
- Lack of data / surveillance \rightarrow further investigations, research needed
- Management: no efficient treatment \rightarrow ethical, legal and animal welfare issues
-

Measures needed to prevent introduction of the disease (kennels)
 UNIVERSITY \& RESEARCH

Thank you for your attention !

For any question, contact us, claire.ponsart@anses.fr

B.canis in Europe: Gaps and challenges in controlling the spread

COHESIVE/IDEMBRU

Grant Agreement number 773830

COHESIVE / IDEMBRU Partners

De Massis F, Ferreira AC, Koets A, Lahti E, Mc Given J, Sacchini F, Whatmore AM, Girault G, Freddi L, Ferreira Vicente A and Djokic V

ENVA Pr A Fontbonne

