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Abstract: Ticks and tick-borne pathogens pose a significant threat to the health and welfare of
humans and animals. Our knowledge about pathogens carried by ticks of Australian wildlife is
limited. This study aimed to characterise ticks and tick-borne microorganisms from a range of wildlife
species across six sites in Victoria, Australia. Following morphological and molecular characterisation
(targeting 16S rRNA and cytochrome c oxidase I), tick DNA extracts (n = 140) were subjected to
microfluidic real-time PCR-based screening for the detection of microorganisms and Rickettsia-specific
real-time qPCRs. Five species of ixodid ticks were identified, including Aponomma auruginans, Ixodes
(I.) antechini, I. kohlsi, I. tasmani and I. trichosuri. Phylogenetic analyses of 16S rRNA sequences of I.
tasmani revealed two subclades, indicating a potential cryptic species. The microfluidic real-time PCR
detected seven different microorganisms as a single (in 13/45 ticks) or multiple infections (27/45). The
most common microorganisms detected were Apicomplexa (84.4%, 38/45) followed by Rickettsia sp.
(55.6%, 25/45), Theileria sp. (22.2% 10/45), Bartonella sp. (17.8%, 8/45), Coxiella-like sp. (6.7%, 3/45),
Hepatozoon sp. (2.2%, 1/45), and Ehrlichia sp. (2.2%, 1/45). Phylogenetic analyses of four Rickettsia loci
showed that the Rickettsia isolates detected herein potentially belonged to a novel species of Rickettsia.
This study demonstrated that ticks of Australian wildlife carry a diverse array of microorganisms.
Given the direct and indirect human–wildlife–livestock interactions, there is a need to adopt a
One Health approach for continuous surveillance of tick-associated pathogens/microorganisms to
minimise the associated threats to animal and human health.

Keywords: Australia; Rickettsia; ticks; tick-borne pathogens; wildlife; zoonosis

1. Introduction

Australia is home to more than 3000 species of wild vertebrates, and new species are
being added to the list frequently [1]. Many of these vertebrate hosts are susceptible to
tick infestation and its harmful effects such as skin damage, toxicosis, irritation, paralysis,
allergies, and anaemia [2,3]. Ticks are obligate haematophagous ectoparasites commonly
associated with the transmission of infectious agents in wild and domestic animals [2].
Additionally, 17% of human infections are vector-borne, and there is an increasing incidence
of tick-borne zoonoses [4,5] that has been primarily ascribed to climate change, landscape
modifications, and changes in mammalian host populations due to habitat fragmentation
and degradation [6–10]. For example, an increase in the prevalence of tick-associated
Lyme disease in North America has been attributed to the increased population of the key
reservoir host (i.e., white-footed mice (Peromyscus leucopus)) due to forest fragmentation
and associated reduced mammalian diversity [11].
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While risks to human and animal health due to ticks and tick-borne pathogens (TBPs)
are of longstanding concern in Australia, our knowledge of specific pathogens posing such
risks is limited [12]. For example, although Borrelia burgdorferi s.l. has not been reliably
identified in Australia, anecdotal evidence supports the association of tick bites with a
Lyme-disease-like illness known as the Debilitating Symptom Complexes Attributed to
Ticks (DSCATT) [12,13]. Infections with Rickettsia (R.) are also common in Australia, and
clinical cases of Queensland tick typhus (caused by Rickettsia australis) [14,15], Flinders
Island spotted fever (R. honei) [16], and Australian spotted fever (R. honei subsp. marmionii)
were reported earlier [17].

More recent investigations have demonstrated the presence of a rich diversity of mi-
croorganisms that include potentially novel pathogens in Australian ticks. For example,
Tadepalli et al. [18] reported a novel Rickettsia sp. belonging to the spotted fever group in
ticks collected from shingleback lizards (Tiliqua rugosa) in southern Western Australia. Sim-
ilarly, some other studies have identified novel species of Bartonella [19–21], Babesia [22–24],
Borrelia [12,23,25,26], Ehrlichia [27,28], Neoehrlichia [12,29,30], flaviruses [12,31], and re-
oviruses [12,32] in Australian ticks and wildlife. However, the pathogenic potential of most
of these detected microorganisms for animal and human health is currently unknown and
warrants further investigations.

Traditionally, PCR-based diagnostic tools have been used for the identification of
TBPs. However, these conventional tools are not ideal for large-scale surveillance programs
due to limitations such as the capacity to simultaneously target only a few pathogens
(usually known), requiring large volumes of target nucleic acid, and consuming a longer
time for testing multiple pathogens. Additionally, conventional diagnostic tools may not
target important commensals or endosymbionts within ticks that play a critical role in
transmitting TBPs [33,34]. Such limitations can be overcome through the use of a novel
microfluidic-based technique [35] that uses a few millilitres of the DNA template to test 48
or 96 targets on a microfluidic system (BioMark™ dynamic array system, Fluidigm) [35–38].
These chips dispense 48 (or 96) samples and 48 (or 96) PCR mixes into individual wells on
a microfluidic chip, thereby performing 2304 or 9216 real-time PCRs [35].

This study aimed to characterise ticks and tick-borne microorganisms from a range
of wildlife species across six sites in Victoria, Australia. We used the microfluidic PCR-
based technique for screening microorganisms followed by amplifying multiple loci using
conventional PCRs to further characterise pathogens/microorganisms.

2. Materials and Methods
2.1. Study Area and Tick Samples

From 2011 to 2020, tick specimens (n = 140) were opportunistically collected from
six Australian wildlife species; i.e., agile antechinus (Antechinus agilis), koala (Phascolarc-
tos cinereus), little penguin (Eudyptula minor), mountain brushtail possum (Trichosurus
cunninghami), southern brown bandicoot (Isoodon obesulus), and bare-nosed wombat (Vom-
batus ursinus), across six sites (Boho South, Cranbourne, Koo Wee Rup, Phillip Island,
Portland, and Wilsons Promontory) in Victoria, Australia (Figure 1; Table 1). The ticks
were transferred to the Melbourne Veterinary School for identification purposes in 70%
ethanol solution.
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Table 1. Host and location details of tick species used in this study.

Host Species Tick Species Location
(Latitude, Longitude)

Ticks

Collected Tested

Bare-nosed wombat
(Vombatus ursinus)

Aponomma
auruginans

Wilsons Promontory
(−39.0080, 146.3895) 19 2

Little penguin
(Eudyptula minor) Ixodes kohlsi

Phillip Island
(Nature Parks)
(−38.4833314,
145.2333324)

14 6

Koala
(Phascolarctos cinereus) Ixodes tasmani Portland

(−38.3333, 141.6000) 21 4

Ixodes trichosuri

Boho South
(−36.783, 145.800)

24 10Mountain brushtail
possum

(Trichosurus cunninghami) Ixodes tasmani 2 2

Agile antechinus
(Antechinus agilis)

Ixodes antechini 7 4

Ixodes tasmani 3 1

Southern brown
bandicoot

(Isoodon obesulus)

Ixodes tasmani Koo Wee Rup
(−38.198798, 145.489126)

30 8

Ixodes trichosuri 6 1

Ixodes trichosuri

Cranbourne
(Botanic Gardens)

(−38.1298617,
45.2701999)

14 7

2.2. Morphological Identification of Ticks

Ticks were morphologically identified at the genus and species level (where pos-
sible) under a dissecting microscope (Olympus, Tokyo, Japan) following dichotomous
keys [39,40]. Some of the tick specimens could not be reliably identified by using only their
morphological characteristics but were subsequently identified along with other specimens
via molecular characterisation as described below.

2.3. Molecular Identification of Ticks

A subset of representative tick specimens (n = 45) was selected for the extraction
of genomic DNA and subsequent molecular identification in such a way that multiple
specimens of each tick genus/species from each host species per location were included in
the subset. Additionally, DNA was also extracted from those specimens (n = 20) for which
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morphological characterisation to the species level was not possible. Briefly, each tick was
longitudinally cut into two halves; one half was preserved in ethanol and the other half was
washed thrice (45 min each time) in distilled water. Subsequently, finely chopped pieces of
washed specimens were subjected to genomic DNA extraction using a DNeasy Blood and
Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol except that
the 56 ◦C incubation step with proteinase K digestion lasted for 24–48 h. The quality and
concentration of the extracted DNA were assessed using a spectrophotometer (ND-1000
UV–vis spectrophotometer v.3.2.1; NanoDrop Technologies, Inc., Wilmington, DE, USA)
and stored at −20 ◦C until further testing.

All tick DNA samples were subjected to PCR amplification of the partial fragments of
mitochondrial cytochrome c oxidase subunit I (cox1) and 16S ribosomal RNA (16S rRNA)
loci separately using published primers [41,42] in a T100 thermal cycler (BioRad, Hercules,
CA, USA). Amplification reactions were carried out in 25 µL reaction volumes containing
6.25 pmol of each primer, 3.12 mM of each deoxynucleotide triphosphate (dNTP), 5X
Green GoTaq flexi reaction buffer (5 µL), 75 mM (for 16S rRNA), 25 mM (for cox1) of
MgCl2, and 1 U of DNA polymerase (Promega, Madison, WI, USA). All reactions included
known positive (DNA of Hyalomma anatolicum and Rhipicephalus microplus) and negative
(UV-sterilised Milli-Q water) controls. Amplicons (5 µL) were separated on 1.5% (w/v)
agarose gels stained with GelRed (Biotium, Fremont, CA, USA) and visualised on a GelDoc
system (BioRad).

2.4. Microfluidic Detection of Microorganisms in Tick DNA Samples

The individual tick DNA samples (n = 45) were subjected to microfluidic real-time
PCR for amplification of specific regions of DNA of the target microorganisms using a
48.48 dynamics array in a Bio-Mark™ real-time PCR system (Fluidigm, San Francisco,
CA, USA), as described previously [35,37,38]. The details of the tested microorganisms
and targeted genomic markers are given in Supplementary Table S1. Negative (no DNA),
microorganism spike control (DNA of Escherichia coli, EDL933 strain), and tick DNA ex-
traction controls were included in each microfluidic chip to ensure the efficient and valid
amplification/detection of targets as described previously [35,37]. Microfluidic PCR results
were confirmed (where only genus-level identification was achieved) using conventional
PCR followed by Sanger sequencing as described previously [37].

2.5. qPCR Detection of Rickettsia spp.

The tick DNA samples were also screened for Rickettsia spp. using a real-time qPCR
assay targeting citrate synthase gene (gltA) sequences as described by Tadepalli et al. [18].
A subset (n = 7) of ticks DNA-positive for Rickettsia gltA qPCR was further examined
as described previously [18,43]. Briefly, the longer fragments of genes encoding (i) gltA,
(ii) outer membrane protein A (ompA), and (iii) the 17 kDa outer membrane antigen were
amplified [18].

2.6. DNA Sequencing and Phylogenetic Analyses

Conventional PCR amplicons generated for ticks and target microorganisms were
purified using shrimp alkaline phosphate and exonuclease I (Thermo Fisher Scientific,
Melbourne, Australia) and subjected to Sanger sequencing using PCR primers. Nucleotide
sequences obtained for target loci of ticks (cox1 and 16S rRNA) and tick-borne microorgan-
isms/pathogens (outer membrane protein B (ompB), ompA, gltA, and 17 kDa) were assessed
for various quality parameters (such as the desired sequence length, base quality score, etc.)
and assembled in Geneious Prime 2019.0.4 software using the de novo assembly function
(Biomatters Ltd., Auckland, New Zealand; www.geneious.com). Unique sequences for each
locus were identified via the “find duplicates” function in Geneious. Subsequently, these
unique sequences were subjected to online searching within the National Center for Biotech-
nology Information (NCBI) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) database to match
their identities with known published reference sequences. All protein-coding nucleotide

www.geneious.com
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sequences were assessed for open reading frames, and then all unique nucleotide sequences
were submitted to the NCBI GenBank. Pairwise comparisons were also conducted for each
sequence dataset using BioEdit [44]. The reference sequences for each locus (of ticks or
tick-borne microorganisms) were retrieved from GenBank and aligned in MEGA 11 [45]
using MUSCLE v.3.8.31 [46]. Aligned sequences were trimmed to uniform lengths of 612
(cox1), 370 (16S rRNA), 352 (gltA), 434 (ompA), 391 (17 kDa), and 267 (ompB) bp.

Phylogenetic analyses were performed on aligned sequence datasets of individual
loci for ticks (cox1 and 16S rRNA) and tick-borne microorganisms (ompA, ompB, gltA, and
17 kDa) using Bayesian Inference (BI), Maximum Likelihood (ML) and Neighbour Joining
(NJ) methods. The NJ and ML analyses were performed in MEGA 11, whereas BI was
performed using the MrBayes plugin [47] in Geneious. The jModelTest v.3.7 [48] was used
to estimate the best-fit evolutionary models for individual sequence alignments based on
the Akaike information criteria (AIC). The best-fit models for nucleotide sequences of ticks
included the Tamura-Nei with Gamma distribution (cox1) and Tamura 3-parameter with
Gamma distribution (16S rRNA) [49,50]. For nucleotide sequences of the microorganisms,
the best-fit models were the Tamura 3-parameter (ompB and gltA), Tamura 3-parameter
with Gamma distribution (ompA), and Kimura-2 parameter (17-kDa) datasets [49,51]. The
nodal supports in the ML and NJ phylogenies were tested using the bootstrap method
(10,000 replicates,) whereas the posterior probabilities of the BI analyses were calculated for
2,000,000 generations (ngen = 2,000,000) while saving every 200th tree (samplefreq = 200).
Corresponding reference sequences of Ornithodoros moubata (GenBank accession: KJ133594),
Rickettsia bellii (LAOIO1000001) and R. felis (CP000053, AF210692 and AF210694) were used
as outgroups for the phylogenetic trees of ticks and microorganisms, respectively.

3. Results
3.1. Morphological and Molecular Characterisation of Ticks

The morphological examination of ticks (n = 140) revealed that the specimens be-
longed to two ixodid genera: Aponomma (n = 19) and Ixodes (n = 121) (Figure 1; Table 1;
Supplementary Table S2). The genus Ixodes (I.) included four species (i.e., I. antechini = 7,
I. kohlsi = 14, I. tasmani = 55, and I. trichosuri = 25), whereas only one species was identified
within the genus Aponomma (Ap. auruginans: n = 19). However, 20 nymphal-stage speci-
mens could morphologically be identified as either I. trichosuri or I. hirsti. Subsequently,
these specimens were identified as I. trichosuri based on the genetic characterisation (cox1
and 16S rRNA loci). The molecular characterisation of the representative specimens of
other tick species concurred with the morphological findings. Ixodes tasmani and I. trichosuri
were found on four (koala, mountain brushtail possum, agile antechinus, and southern
brown bandicoot) and two (mountain brushtail possum and southern brown bandicoot)
host species, respectively; whereas Ap. auruginans, I. kohlsi, and I. antechini were found
only on wombats, little penguins, and agile antechinus, respectively (Figure 1; Table 1;
Supplementary Table S2).

3.2. Sequence and Phylogenetic Analyses of Nucleotide Sequences of Ticks

A total of 27 unique tick nucleotide sequences (cox1= 14; 16S rRNA = 13) were obtained
for I. trichosuri (cox1 = 5; 16S rRNA = 4), I. antechini (cox1 = 2; 16S rRNA = 2), I. tasmani
(cox1 = 3; 16S rRNA = 4), I. kohlsi (cox1 = 3; 16S rRNA = 2), and Ap. auruginans (cox1 = 1;
16S rRNA = 1). Upon an NCBI Blast search of cox1 sequences, the I. trichosuri sequences
showed the highest similarity (99.5–99.7%) with the previously published sequences of
the same species (MN686562, MN686563, and MN686568); that of I. kohlsi was identical
to a sequence of I. eudyptidis/kohlsi (KM488522); and one sequence of Ap. auruginans
had a similarity of 99.8% to that of the Bothriocroton sp. isolate (KM821511), all of which
were reported from different hosts in Australia. The cox1 sequences of I. tasmani showed
a 90.4–98.04% similarity to those of the same species (KX676867 and MN106731) from
Australia. There was no reference sequence available for I. antechini in the GenBank; the
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sequences determined herein showed the highest similarity (91.33%) to that of I. brunneus
(KX360364) from Canada.

For the 16S rRNA sequences, I. kohlsi had the highest similarity (99.7%) to those
of I. eudyptidis/kohlsi (KM488490 and KM488491) from Australia, while the I. antechini
sequences showed the highest similarity (97.1%) to a sequence (AF113929) of the same
species from an unknown origin. No 16S rRNA reference sequence was available for Ap.
auruginans and I. trichosuri; however, their sequences determined herein showed the highest
similarities (90.4% and 92%, respectively) to those of Bothriocroton concolor (JN8663727) and I.
holocyclus (MH043264), respectively, from Australia. In concordance with the BLAST search
results obtained for the I. tasmani cox1 sequences, the 16S rRNA sequences also showed
a wide range of similarities (87.75–98.27%) with those reported previously (U95906 and
MH043271). The pairwise comparisons of the 16S rRNA and cox1 sequences of I. tasmani
isolates characterised in this study also showed a high level of intraspecific variation (16S
rRNA: 0.3–14.3% and cox1: 2–11.3%) (Supplementary Tables S3 and S4).

Separate phylogenetic trees for the 16S rRNA and cox1 sequences estimated using the
three methods (BI, ML, and NJ) showed identical tree topologies; therefore, only ML trees
are presented along with posterior probabilities (pp) and bootstrap support values (bs) for
BI, and NJ and ML, respectively (Figure 2A,B). For both 16S rRNA and cox1, the clustering
of sequences was similar and showed only minor differences potentially related to the
unavailability of 16S rRNA and cox1 reference sequences for I. trichosuri and I. antechini,
respectively. The cox1 sequences of I. trichosuri grouped with the previously published
sequence (MN686568) of I. trichosuri from Australia with strong nodal support (pp = 1;
bs for NJ = 100%; bs for ML = 99%) (Figure 1B), whereas the corresponding 16S rRNA
sequences clustered together as a separate clade with strong nodal support (pp = 1; bs for
NJ = 99%; bs for ML = 99%) (Figure 1A).

Similarly, the 16S rRNA sequences of I. antechini grouped with a previously published
sequence (AF113829) of the same species, whereas the cox1 sequences formed a separate
cluster with strong nodal supports (16S rRNA: pp = 1, bs for NJ = 100%, and bs for
ML = 99%; and cox1: pp = 1, bs for NJ = 100%, and bs for ML = 100%) (Figure 1). The
sequences of I. kohlsi grouped with previously published sequences of I. eudyptidis/kohlsi
(16S rRNA: KM488490 and KM488491; and cox1: KM488521 and KM488522) with low to
strong nodal support (16S rRNA: pp = 0.86, bs for NJ = 63%, and bs for ML = 95%; and cox1:
pp = 1, bs for NJ = 100%, and bs for ML = 96%). Both the 16S rRNA and cox1 sequences of
I. tasmani produced two distinct subclades with low to strong nodal support (16S rRNA:
pp = 1, bs for NJ = 94%, and bs for ML = 84%; and cox1: pp = 1, bs for NJ = 92%, and bs
for ML = 71%) (Figure 1). Within each subclade, the sequences determined in this study
were grouped along with the corresponding reference sequences (16S rRNA: U95906 and
NC041086; cox1: MN106731 and NC041086) of the same species previously published from
Australia with strong nodal support (subclade 1—16S rRNA: pp = 1, bs for NJ = 99%, and
bs for ML = 95%; and cox1: pp = 1, bs for NJ = 100%, and bs for ML = 98%/subclade 2—16S
rRNA: pp = 1, bs for NJ = 99%, and bs for ML = 95%; and cox1: pp = 1, bs for NJ = 100%, and
bs for ML = 93%). Both sequences of Ap. auruginans clustered with the respective sequences
of ticks of the Bothriocroton genus with strong nodal support (16S rRNA: pp = 1, bs for
NJ = 99%, and bs for ML = 99%; and cox1: pp = 1, bs for NJ = 100%, and bs for ML = 100%).
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Figure 2. Genetic relationships of 16S rRNA gene (A) and cytochrome c oxidase subunit I gene (B)
sequences of ticks collected from Australian wild animals from Victoria. The 16S rRNA (370 bp)
and cox1 (612 bp) datasets were analysed using Neighbor Joining (NJ), Maximum Likelihood (ML)
and Bayesian Inference (BI) methods. There was a concordance among the topology of the BI, ML,
and NJ trees (not shown); only the ML tree is presented here. Nodal support is given as a posterior
probability of BI and bootstrap values for NJ and ML. Sequences obtained in this study are shown in
bold fonts. The trees were rooted using Ornithodoros moubata as an outgroup. Each scale bar indicates
the number of inferred substitutions per site.

3.3. Microfluidic Detection of Tick-Borne Microorganisms

The microfluidic real-time PCR detected the DNA of at least one of the targeted
microorganisms in 88.9% of tested ticks (40/45), and a total of seven microorganisms were
detected (Figure 3; Table 2; Supplementary Table S2). The most common microorganisms
detected were Apicomplexa sp. (84.4% (38/45)) followed by Rickettsia sp. (55.6% (25/45)),
Theileria sp. (22.2% (10/45)), and Bartonella sp. (17.8% (8/45)). A low proportion of ticks
was also found to be positive for the DNA of Coxiella-like sp. (6.7%), Hepatozoon sp. (2.2%),
and Ehrlichia sp. (2.2%). (Table 2; Supplementary Table S2). Ixodes tasmani, I. trichosuri, and
I. antechini ticks were positive for five (out of seven) detected microorganisms, whereas
one and three were found in I. kohlsi and Ap. auruginans ticks, respectively (Table 2).
Ticks collected from mountain brushtail possums, southern brown bandicoots, and agile
antechinus had the highest number of microorganisms (n = 5) followed by those from
bare-nosed wombats and koalas (n = 3) and little penguins (n = 1) (Table 2; Supplementary
Table S2). The number of microorganisms detected in a tick species also varied in different
host species. For example, I. tasmani ticks were positive for five, three, two, and one
microorganisms in specimens collected from southern brown bandicoots, koalas, agile
antechinus, and mountain brushtail possums, respectively. Similarly, I. trichosuri were
positive for five and two microorganisms in specimens collected from mountain brushtail
possums and southern brown bandicoots, respectively (Table 2).
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Table 2. Diversity of microorganisms found in ticks of wildlife species collected from six localities in
Victoria, Australia.

Microorganisms

Little
Penguin

(Eudyptula
minor)

Koala
(Phascolarctos

cinereus)

Bare-Nosed
Wombat

(Vombatus
ursinus)

Mountain Brushtail
Possum

(Trichosurus
cunninghami)

Agile Antechinus
(Antechinus agilis)

Southern Brown
Bandicoot

(Isoodon obesulus
obesulus)

Ixodes
kohlsi
(n = 6)

Ixodes tasmani
(n = 4)

Aponomma
auruginans

(n = 2)

Ixodes
trichosuri

(n = 10)

Ixodes
tasmani
(n = 2)

Ixodes
antechini
(n = 4)

Ixodes
tasmani
(n = 1)

Ixodes
tasmani
(n = 8)

Ixodes
trichosuri

(n = 8)

Apicomplexa sp. 4 3 2 7 2 4 1 8 7

Bartonella sp. - - - 3 - 3 - 2 -

Coxiella-like sp. - - 2 1 - - - - -

Ehrlichia sp. - - - - - 1 - - -

Hepatozoon sp. - - - - - - - 1 -

Rickettsia sp. - 1 1 6 - 4 - 8 4

Theileria sp. - 1 - 2 - 4 1 2 -

3.4. Co-Occurrence of Microorganisms

The DNA of single microorganisms was detected in 13 ticks (I. kohlsi, I. tasmani, and
I. trichosuri), 27 ticks tested positive for DNA of multiple microorganisms, and only 5
ticks were found to be negative for DNA of all microorganisms tested herein (Figure 3;
Supplementary Table S2). Among ticks positive for multiple microorganisms, most of them
carried two (n = 14), three (n = 9), four (n = 2), and five (n = 2) microorganisms. The highest
numbers of co-occurring microorganisms were detected in I. trichosuri and I. antechini ticks,
which tested positive for five microorganisms (Figure 3; Supplementary Table S2).



Pathogens 2023, 12, 153 9 of 16

3.5. Genetic Relationship of Rickettsia Species

The BLAST search revealed variable results for different sets of the rickettsial nu-
cleotide sequences determined herein (data not provided). The ompA and ompB sequences
showed the highest similarity to those of Candidatus R. antechini (DQ372955; 100%) and
Candidatus R. tasmanensis (GQ223393; 98.88%), respectively, that were previously published
from Australia. Similarly, the 17 kDa sequence showed the highest similarity to that of
R. honei (AF060704; 99.49%) from Australia, and the gltA sequence showed the highest
similarity (99.72%) to that of R. conorii subsp. raoultii from China.

The phylogenetic analyses of unique sequences of four different genetic markers
(ompA, ompB, gltA, and 17 kDa) of Rickettsia sp. determined herein also produced different
topologies (Figure 4). Separate phylogenies based on gltA and ompA sequences showed that
the rickettsial sequences determined in this study were grouped with respective sequences
of Candidatus R. antechini (DQ372954, DQ372955) with various nodal supports (gltA: pp = 1,
bs for NJ = 65%, and bs for ML = 75%; and ompA: pp = 0.97, bs for NJ = 89%, and bs for
ML = 99%), respectively (Figure 4A,B). For the phylogenetic tree based on the 17 kDa gene,
the sequences determined herein grouped separately along with R. honei and R. japonica
with low nodal support (pp = 0.97, bs for NJ = 43%, and bs for ML = 55%) (Figure 4C). The
genetic relationships of the ompB gene sequences revealed their grouping with those of
Candidatus R. tasmanensis (GQ223393) from Australia with low to strong nodal support
(pp = 1, bs for NJ = 77%, and bs for ML = 75%) (Figure 4D).
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Figure 4. Genetic relationships of the citrate synthase (gltA) gene (A), outer membrane protein A
(ompA) gene (B), 17 kDa gene (C), and outer membrane protein B (ompB) gene (D) sequences of
Rickettsia sp. detected in ticks collected from Australian wild animals from Victoria. The sequence
data (in bp) (352 (gltA), 434 (ompA), 391 (17 kDa), and 267 (ompB)) for each locus were separately
analysed using Neighbor Joining (NJ), Maximum Likelihood (ML), and Bayesian Inference (BI)
methods. There was a concordance among the topologies of the BI, ML, and NJ trees (not shown);
only ML trees are presented here. Nodal support is given as a posterior probability of BI and bootstrap
values for NJ and ML. Sequences obtained in this study are shown in bold fonts. Trees were rooted
using R. felis and R. bellii as outgroups. Each scale bar indicates the number of inferred substitutions
per site.

4. Discussion

In this study, we utilised, for the first time, a high-throughput microfluidic PCR-based
technique to simultaneously detect bacterial, rickettsial, and protozoal microorganisms
in ticks collected from six wild animal species in Australia. We found a diverse range
of microorganisms, including several that were potentially pathogenic and of zoonotic
importance (e.g., species of Rickettsia and Bartonella). The simultaneous detection of DNA of
up to seven species of potentially pathogenic microorganisms highlighted the significance
of such studies for the surveillance of ticks and TBPs from a One Health perspective. The
molecular characterisation of I. tasmani revealed genetic variation among different isolates,
which indicated the potential presence of cryptic species. Furthermore, the findings of our
study added significantly to the growing literature on the diversity of ticks and tick-borne
microorganisms of Australian wildlife.

Given that the scope of this study was limited to DNA-based detection of microorgan-
isms, it did not exclude the possibility of the occurrence of RNA-based microorganisms
(such as retroviruses), which have been reported previously in Australian ticks [12,32].
It should also be noted that no corresponding serological testing of wildlife hosts was
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conducted for the detection of infections. Therefore, the evidence described in this paper
did not imply that there was a transmission of these microorganisms between ticks and
their hosts. However, these ticks may serve as reservoirs or vectors of infection for wildlife
hosts, domestic animals, and human populations.

Microfluidic-based real-time PCR is a powerful screening tool that has the capacity to
perform thousands of parallel real-time PCRs simultaneously, thereby automating rotework
and reducing the costs of time, labour, and consumables [35,36]. In conventional molecular
amplification assays, there are a restricted number of targets that can be chosen at a time,
thus limiting the screening of TBPs to targeting only pathogens (primarily those that
were previously reported as being transmitted by the ticks in an area) [52]. Moreover, the
very small volume of DNA template (1.3 µL) required for testing either 48 or 96 targets
allows for a far greater variety of pathogens to be tested in tick DNAs (which is usually
very-low-yield DNA) [35]. It is also more useful to comprehensively identify co-occurring
microorganisms in ticks in situations where conventional PCR and Sanger sequencing lack
capacity [22]. While next-generation sequencing is also high-throughput and exhaustive, it
ultimately requires time and labour, larger volumes of templates, more optimisation steps,
and complex data analyses [53,54]. The ease of application and subsequent associated
analyses of microfluidic technology makes it highly suitable for use in field-based rapid
diagnostics and point-of-care testing in hospital settings [55].

The high level of intraspecific sequence variation (pairwise nucleotide differences:
16S rRNA = 0.3-14.1%; cox1: 2-11.3%) and phylogenies based on the 16S rRNA and cox1
sequences of ticks demonstrated that the I. tasmani sequences determined herein either
belong to two distinct species or that there are subspecies. These findings concurred with
those of previous studies that also reported that I. tasmani might be a cryptic species or
that there could be subspecies [40,56]. Further sampling and molecular investigations that
employ longer read sequencing such as complete mitochondrial and/or whole genome
sequencing would be useful to resolve the unclear phylogeny for this tick species.

It has been previously demonstrated that tick infestations lead to irritation, ill-thrift,
and anaemia in wild animals such as koalas [57] and bandicoots [58]. However, little is
known about the pathogenicity of the diverse array of microorganisms reported within
Australian ticks in this study or in previous studies [12,29]. Certain species of Anaplasma,
Babesia, and Ehrlichia have been known to cause a clinical disease characterised by severe
anaemia, lethargy, neurologic signs, and death in kangaroos [59,60] and wild canids [61].
These pathogens along with Theileria sp. are also a concern in agricultural losses because
they are capable of causing haematological disease and associated production losses in Aus-
tralian cattle [62–65]. However, these diseases are primarily limited to bovines inhabiting
northern tropical regions of Australia and are usually transmitted by cattle ticks, including
Haemaphysalis longicornis [62] and Rhipicephalus microplus [65]. There is a need to test the
competency of ticks characterised herein for vector potential, particularly in Victoria where
other tick vectors are non-endemic.

The detection of the DNA of Hepatozoon sp. in 2.2% of the ticks tested in the present
study underpinned the potential role of this tick in the transmission, prevalence, and
consequent spillage of hepatozoonosis to domestic and wild canids. Several Hepatozoon
species (e.g., H. canis, H. banethi n. sp., and H. ewingi n. sp.) have been previously reported in
ticks and wildlife in Australia [22]. Hepatozoonosis, which is caused by the apicomplexan
blood parasite H. canis, was first reported in 1905 in dogs from India and is transmitted by
the ingestion of infected tick vectors [66,67]. Until now, autochthonous infections of H. canis
have been reported in more than 60 countries across Africa, Americas, Asia, Europe, and
the Middle East. Recently, an H. canis infection with a potential tick origin was detected for
the first time in a dog in Australia [68]. Our findings and previous reports of H. canis in
Australia could be highly significant because following initial reports of autochthonous
infections of this pathogen from Germany, Austria, Slovakia, and the Czech Republic,
it was later demonstrated that H. canis was actually endemic in these countries [22,68].
Such findings of H. canis in previously non-endemic countries could be attributed to the
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invasion of infected ticks and canids in these countries as well as the non-existence of TBP
surveillance systems [68,69]. Although the DNA of this pathogen has been previously
demonstrated in several tick genera including Amblyomma, Dermacentor, Haemaphysalis
and Ixodes, its primary vectors are members of Rhipicephalus sanguineus s.l. [68]. Given the
availability of tick vectors for this pathogen in Australia, further investigations are needed
to determine its level of spread and associated risks.

Coxiella burnetii, the cause of Q fever, is usually carried by various tick species found
on macropods, domestic animals, bandicoots, and birds [10]. Infections with C. burnetii in
these animals usually remain subclinical [10], but the clinical disease has been reported to
cause significant production losses in sheep [64]. This pathogen is also of high zoonotic
significance because it may be transmitted to people working closely with animals, such as
farmers, abattoir workers, or veterinary staff [70]. Notably, the Coxiella-like sp. DNA de-
tected in 6.7% of ticks tested in the present study potentially belongs to the non-pathogenic
endosymbionts [71]. This significant finding highlighted the need for further exploration of
the microbiota of Australian ticks because the evolutionary origin of highly pathogenic and
infectious C. burnetii from a maternally inherited endosymbiont is still unclear [71]. Addi-
tionally, I. tasmani, Ap. Auruginans, and I. trichosuri (species found positive for Coxiella-like
sp. DNA) are not known to transmit C. burnetii.

In the present study, 55.6% of the ticks tested positive for the DNA of Rickettsia species.
These positive ticks included four species (Ap. auruginans, I. tasmani, I. antechini, and I.
trichosuri) collected from five different host species. Previous studies reported various levels
of occurrence of Rickettsia species in ticks from different hosts. For example, Izzard et al. [72]
and Tadepalli et al. [18] found that 55% and 92% of I. tasmani and Amblyomma albolimbatum
ticks were positive for rickettsial DNA, respectively. There are four known rickettsial species
(including a novel subspecies) that cause clinical disease in mammals in Australia. These
include R. australis (the cause of Queensland tick typhus), R. honei (Flinders Island spotted
fever), and R. australis subsp. marmionii (Australian spotted fever) and R. gravesii, which
are transmitted by several tick species [21]. The Blast analyses of the nucleotide sequences
of multiple metabarcodes of the rickettsial isolates characterised herein did not provide
conclusive evidence about their identity. Likewise, the phylogenies based on nucleotide
sequences of four markers showed a close association of the rickettsial isolates determined
herein with the spotted fever group’s rickettsial species (Candidatus R. tasmanensis and
Candidatus R. antechini). These results suggested that the rickettsial isolates identified in this
study might belong to novel species or subspecies of unknown pathogenic and/or zoonotic
potential. However, these findings should be further investigated through comparative
molecular typing, isolation, and whole-genome characterisation.
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www.mdpi.com/article/10.3390/pathogens12020153/s1, Table S1: Details of target genetic markers
used for testing microorganisms in tick DNA; Table S2: Host and location details of ticks tested and the
real-time PCR cycle threshold (ct) values for microorganisms detected in this study; Table S3: Pairwise
percentage nucleotide similarities of 16S ribosomal RNA sequences of Ixodes tasmani determined in
this study; Table S4: Pairwise percentage nucleotide similarities of cox1 sequences of Ixodes tasmani
determined in this study.
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