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ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) presenting spa type
t899 is commonly associated with sequence type 9 (ST9) but is also increasingly
linked to ST398. This study provides genomic insight into the diversity of t899 isolates
using core genome multilocus sequence typing (cgMLST), single nucleotide polymor-
phism (SNP)-based phylogeny, and the description of selected antimicrobial resistance
and virulence markers. The SNP-based phylogenic tree showed that isolates sharing
the same spa type (t899) but different STs highly diverged in their core and accessory
genomes, revealing discriminant antimicrobial resistance (AMR) and virulence markers.
Our results highlighted the idea that in a surveillance context where only spa typing is
used, an additional multiplex PCR for the detection of the tet(M), sak, and seg genes
would be valuable in helping distinguish ST9 from ST398 isolates on a routine basis.

IMPORTANCE This study showed the genetic diversity and population structure of S.
aureus presenting the same spa type, t899, but belonging to different STs. Our find-
ings revealed that these isolates vary deeply in their core and accessory genomes,
contrary to what is regularly inferred from studies using spa typing only. Given that
identical spa types can be associated with different STs and that spa typing only is not
appropriate for S. aureus isolates that have undergone major recombination events
which include the passage of the spa gene (such as in t899-positive MRSA), the combi-
nation of both MLST and spa typing methods is recommended. However, spa typing
alone is still largely used in surveillance studies and basic characterization. Our data sug-
gest that additional markers, such as tet(M), sak, and seg genes, could be implemented
in an easy and inexpensive manner in order to identify S. aureus lineages with a higher
accuracy.

KEYWORDS MRSA, t899, spa type, MLST, cgMLST, whole-genome sequencing

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) was first
described in 2005 (1, 2) and rapidly gained importance because of its capacity to

colonize and infect humans, particularly pig farmers. Clonal complex 398 (CC398) has
been referred to as the predominant LA-MRSA lineage in Europe (3, 4), but other line-
ages, including CC9 and CC5, have also been detected (3–7).

spa type t899 originally belongs to CC9 (sequence type 9 [ST9]), the predominant LA-
MRSA genotype reported in Asia, and was identified in pigs and their associated human
workers (8). More recently, spa type t899 was also reported in a CC9/CC398 hybrid strain in
Europe (9, 10). This hybrid is a unique genotype with a CC398 chromosomal backbone
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and smaller CC9 region with a spa gene (9). CC9 differs from the European pig-associated
CC398 with regard to clonal type, staphylococcal cassette chromosome mec element
(SCCmec) content, and resistance profile (4).

CC398 (ST398) isolates belonging to spa type t899 have received specific attention
because they cause sporadic illness in humans (9, 11–13). This lineage notably harbors
the staphylococcal complement inhibitor (scn), staphylokinase (sak), and chemotaxis
inhibitory protein (chp) genes associated with the f Sa3 immune evasion cluster (IEC),
allowing adaptation to the human host (10). spa types t011 and t034 (which display close
tandem repeat successions) are still the main types associated with CC398, but t899 is
increasingly described in the literature both in human and veterinary medicine (14–19).

The CC9/CC398 hybrid strain has been identified from livestock (9, 10) and related
personnel (11, 20) in several European countries. Furthermore, two CC398 LA-MRSA
spa type t899 isolates were recently reported as incidental findings during a clinical
investigation from turkey and pheasant in the United Kingdom (10, 21). These two iso-
lates were shown to belong to the CC9/C398 hybrid genotype and were quite similar
to the clone that was reported from continental Europe (10, 13, 22). Interestingly, t899
has been increasingly associated with several single-locus variants (SLVs) of CC398 and
CC9 (16–18).

Overall, the occurrence of the same spa types in distant lineages has been reported,
resulting from either convergent evolution or genetic recombination (23, 24). As an
example, CC239 MRSA is a hybrid strain of CC30 (founder, ST30) and CC8 (founder,
ST8) (23). ST34 and ST42 backgrounds have also been suggested to be of hybrid origin
(24). Recently, t304 isolates belonging to ST6, ST1649, ST8, and ST4290 were reported
by Bartels et al. (25).

Since spa typing is still largely used as the unique typing method, for example in
large surveillance studies and in low-income countries, our aim was to characterize
t899 isolates using single nucleotide polymorphism (SNP)-based phylogeny on publicly
available genomic data and associated metadata in order to identify markers that
could be implemented in an easy and inexpensive manner in order to identify LA-
MRSA lineages with a higher accuracy.

RESULTS

Thirty-four LA-MRSA genomes of t899 isolates were analyzed, of which 20 belonged
to ST398, 13 to ST9, and 1 to ST4034 (a single-locus variant [SLV] of ST398, differing by
one substitution [A294T] in the arcC gene). Metadata associated with the selected iso-
lates were recorded (Table 1). All t899 isolates harbored the mecA gene on a SCCmec
IVa(2B) element, except for two which presented either the SCCmec V element or an
undefined cassette. Both the spanning tree and the SNP-based phylogenetic tree (Fig.
1B and 2) confirmed a strong clustering according to the ST, with the ST4034/t899 iso-
late differing from ST398/t899 by only 41 core alleles. Other characteristics, including
matrix/sample origin, did not appear to cluster in this SNP analysis.

The phylogenetic tree (Fig. 2) also showed major divergences in the antimicrobial re-
sistance and virulence patterns depending on the ST. All ST398 isolates carried the tet(M)
gene, while none of the ST9 isolates carried this tetracycline resistance gene (Fig. 2).
Concerning virulence markers, most ST398 spa type t899 isolates harbored the scn and
sak genes, indicating the presence of the IEC cluster, while ST9 isolates were devoid of
the IEC cluster but systematically harbored the seg, sei, sem, sen, and seu genes, encoding
enterotoxin-like proteins (Fig. 2).

DISCUSSION

In this study, the SNP-based phylogeny analysis was consistent with the core ge-
nome multilocus sequence typing (cgMLST) analysis, with t899 isolates clustering apart
based on STs. Although spa typing has a remarkable predictive power over clonal
relationships, predicting genetic relatedness based on spa type does not appear appro-
priate for isolates that have undergone major recombination events, including spa
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gene passages (26–31). This important genomic recombination is not frequent in S.
aureus, and the major representatives of such events are ST239, ST34, and ST42. The
CC9/CC398 hybrid is another important example, giving rise to t899 isolates which
largely diverge from their original CC9 genetic backgrounds and which mediate human
diseases given their arsenal of virulence factors.

Here, we characterized t899 isolates from different STs using whole-genome-
sequencing (WGS)-based approaches, together with epidemiological data, antimicro-
bial resistance genes, and virulence markers. This analysis revealed the differential
occurrence of genes that can be used to further characterize t899 isolates. ST398-t899
isolates harbored the IEC cluster, which is crucial for disrupting the normal function of
the human immune system (22, 32–34). Among the 34 t899 isolates tested, all ST398
representatives harbored the tet(M) gene, which is either transposon located or chro-
mosomal, while ST9 representatives either were susceptible or carried the plasmid-
located tet(L) gene. The tetracycline resistance gene tet(M) is a common feature of LA-
MRSA ST398, while it is absent from MRSA ST9 (35–37). In contrast, ST9 isolates carried
staphylococcal enterotoxin (SE) genes, which were not detected in ST398 isolates. This
clear discrepancy between the two lineages would be useful to refine the LA-MRSA char-
acterization when only spa typing is used and indicates the presence of t899 isolates.

Overall, investigations into S. aureus populations using WGS would be useful for
future molecular epidemiology studies and for more closely examining the global evo-
lution of S. aureus lineages. WGS also helps to assess the performances of classical typ-
ing methods by comparison. According to David et al. (38), two genotyping methods

TABLE 1 Genotypic features of 34 methicillin-resistant Staphylococcus aureus spa type t899 isolatesa

Accession no. Isolate ID Yr of isolation Geographic origin Isolate source MLST SCCmec Tetracycline resistance gene
SRR1290901 28114 2013 Germany Human ST9 IVa(2B) ND
SRR1290895 28144 2013 Germany Poultry ST9 ND ND
SRR1303238 28194 2010 Netherlands Human ST9 IVa(2B) tet (L)
SRR1290877 28212 — Germany Animal ST9 IVa(2B) tet (L)
SRR1303551 29908 — Germany Poultry ST9 IVa(2B) tet (L)
SRR1303423 29933 2010 Netherlands Human ST9 IVa(2B) tet (L)
SRR1303430 30017 2011 Netherlands Human ST9 IVa(2B) ND
ERR594184 30893 2014 Germany Human ST9 IVa(2B) ND
SRR7825591 SAV1035 2017 Poland Poultry meat ST9 IVa(2B) ND
SRR7825590 SAV1149 2017 Germany Poultry meat ST9 IVa(2B) ND
SRR7825587 SAV1150 2017 Germany Poultry meat ST9 IVa(2B) ND
SRR7825588 SAV1158 2017 Germany Poultry meat ST9 IVa(2B) ND
SRR7825595 SAV1228 2017 Czech Republic Pork ST9 IVa(2B) ND
ERR2442746 APHA06 2016 England Turkey ST398 IVa(2B) tet(M)
ERR2562460 PHE3997901 2017 Scotland Pheasant ST398 IVa(2B) tet(M)
SRR1218618 10S00488 2010 Germany Turkey meat ST398* IVa(2B) tet(M)
SRR1290866 81070 — Germany Human ST398 IVa(2B) tet(M)
SRR1290867 11S01586 2011 Germany Camembert ST398* IVa(2B) tet(M)
SRR1290868 12-ST01988 2012 Germany Turkey meat ST398* IVa(2B) tet(M)
SRR1290875 12S01399 2012 Germany Turkey meat ST398* IVa(2B) tet(M), tet(K)
SRR1300909 63-D10 2012 France Turkey ST398* IVa(2B) tet(M)
SRR1303281 12S00881 2012 Germany Turkey meat ST398* IVa(2B) tet(M)
SRR1303432 2010-60-7626-19 2010 Denmark Chicken meat ST398* IVa(2B) tet(M)
SRR1303468 12S01153 2012 Germany Turkey meat ST398* IVa(2B) tet(M)
SRR1303550 81629 — Denmark Human ST398 IVa(2B) tet(M)
SRR1303558 10S01493 2010 Germany Turkey meat ST398* IVa(2B) tet(M)
SRR445027 12152-5 2008 Italy Pig ST398* IVa(2B) tet(M)
SRR445029 30116 2008 Italy Pig ST398* V(5C2&5) tet(M)
SRR445030 44523-1 2008 Italy Pig ST398* IVa(2B) tet(M)
SRR445060 UB08116 2008 France Pig (dust) ST398 IVa(2B) tet(M)
SRR7825589 SAV1146 2017 Germany Poultry meat ST398 IVa(2B) tet(M)
SRR7825592 SAV1109 2017 Poland Poultry meat ST398 IVa(2B) tet(M)
SRR7825593 SAV0154 2013 Czech Republic Pork ST4034 IVa(2B) tet(M)
SRR7825594 SAV0987 2017 Czech Republic Human ST398 IVa(2B) tet(M)
a*, CC398/CC9 hybrid strain; tet, tetracycline resistance gene;—, not available; ND, not detected. Isolates with SAV numbers are unique to this study.
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examining distinct genetic loci will not consistently provide identical results in classify-
ing MRSA isolates, mostly because these methods assess genetic differences that can
evolve independently. Classification systems often employed for epidemiological
research have created competing nomenclatures that are useful for assessing the relat-
edness of isolates but are unfortunately not always directly comparable. This study
emphasizes that spa typing is not sufficient to characterize t899-positive LA-MRSA.
Accordingly, this study suggests the usefulness of an additional genomic marker to
assign t899-positive MRSA isolates to the ST9 or ST398 clone, which may include tet
(M), sak, and/or seg genes. Of course, this analysis should be refined when new t899
isolates belonging to other STs are sequenced and characterized.

MATERIALS ANDMETHODS
Bacterial collection. Thirty-four t899 S. aureus isolates were found in the publicly available data-

bases, and their corresponding characteristics (MLST, matrix [human, food, and animal origins], and geo-
graphical origin) were recorded. Raw reads were downloaded from NCBI, reads were quality checked with
FastQC v.0.65, and low-quality reads were trimmed using Trimmomatic v.0.36.4 (39). Subsequently, contigs
were generated using the SPAdes ve.3.5.0 algorithm (40), and those whose length exceeded 200bp were
retained in the assembly. In the literature, spa type t899 was also found to belong to 15 other SLVs and
multilocus variants (MLVs) of ST9 and ST398 (see Table S1 in the supplemental material). These isolates
could unfortunately not be included in our analysis because of the absence of associated WGS data.

cgMLST analyses. Isolates were subjected to cgMLST analyses. Genome-wide gene-by-gene micro-
bial typing was performed using Ridom SeqSphere1 S. aureus cgMLST analysis with default parameters
(41). The cgMLST data contain 1,861 coding loci representing the core genome (41). Once an allelic pro-
file was assigned to each genome, a minimum spanning tree was constructed from the concatenated
core genome sequences and visualized using the online tool PHYLOViZ. cgMLST loci with no allele calls
were ignored in the pairwise comparison during the tree construction. The minimum spanning tree con-
structed on the basis of cgMLST data illustrates clusters by ST, spa type, or matrix (Fig. 1).

SNP analysis and phylogenetic tree. A phylogenetic tree was constructed based on single nucleo-
tide polymorphism (SNP) analysis (9, 10, 22). SNPs were identified by mapping reads against the ST398
reference genome (strain S0385; GenBank accession no. AM990992). The maximum-likelihood phylogenetic
tree was established in CSI Phylogeny using default settings (42). The phylogenetic tree visualization was
realized using iTOL (Interactive Tree of Life) (43).

Detection of resistance genes and selected virulence markers using WGS data. The online tools
ResFinder v.3.2 (44) and Virulence Finder v. 2.0 (45) from the Center for Genomic Epidemiology web-

FIG 1 Minimum spanning tree based on the concatenated core genome of 34 S. aureus t899 strains
with color annotation based on (A) MLST and (B) matrix. Visualization was realized using PHYLOViZ.
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based platform were used to detect genes encoding potential resistance to antimicrobials and virulence
markers, respectively. For a hit to be reported by the two programs, it had to cover at least 60% of the
length of the gene sequence in the database with sequence identities of 60% and 90%, respectively.
WGS-assembled data were used to perform the analysis.

Data availability. The sequence information for isolates SAV1035, SAV1149, SAV1150, SAV1158, and
SAV1228 has been deposited in the SRA database under study accession number SRP161670. Individual
accession numbers are listed in Table 1.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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