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Abstract 1

2

The Sylvatub system is a national surveillance programme set up in 2011 in France to monitor in wild

species the infection by Mycobacterium bovis, the main aetiologic agent for bovine tuberculosis. This

participatory programme, involving both national and local stakeholders, allowed to monitor from 2013

to 2019 the progression of the infection in three badger populations located in clusters covering between

3222 km2 and 7698 km2. In each cluster, badgers were trapped and tested for M. bovis. Our first aim

was to describe the dynamics of the infection in these clusters. We developed a Bayesian model of the

prevalence accounting for the spatial structure of the cases, the imperfect and variable sensitivity of the

diagnostic tests, and the correlation of the infection status of badgers of the same commune caused

by local factors (social structure, proximity to infected farms, etc.). This model revealed a prevalence

increasing with time in one cluster (Dordogne/Charentes), decreasing in the second cluster (Burgundy), and

remaining stable in the third cluster (Bearn). In all clusters, the infection was strongly spatially structured,

whereas the mean correlation between the infection status of two animals trapped in the same commune

was negligible. Our second aim was to develop indicators for the monitoring of the M. bovis infection

by stakeholders of the programme. We used the fitted model to estimate, in each cluster, (i) the mean

prevalence level at mid-period, and (ii) the proportion of the badger population becoming infected in one

year. We then derived two indicators of these two key quantities from a much simpler regression model, and

we showed how these two indicators could be easily used to monitor the infection in the three clusters. We

showed with simulations that these two simpler indicators were a good approximation of these key quantities.
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Introduction 24

Mycobacterium bovis is a bacterium that can be transmitted to several domestic and wild species, and to 25

humans. It is the main aetiologic agent for bovine Tuberculosis (bTB), a regulated disease that is still detected 26

in cattle in different European countries. When a farm is detected infected, different control measures can 27

be applied depending on the country and the specific situation of the farm, including the slaughtering of the 28

herd. France is officially free from bTB since 2001 (Delavenne, Pandolfi, et al., 2019), as less than 0.1% of 29

cattle herds are infected annually. In certain parts of the country, infection is still regularly detected in cattle 30

farms and in wild species, mainly wild boars and badgers. The main factor of persistence is the cattle-to-cattle 31

transmission through between-herd contacts (Marsot et al., 2016; Palisson et al., 2016). However, in some 32

areas, a complex multi-host system can explain the circulation of M. bovis between the different compartments 33

(domestic species, wild species and environment, Réveillaud et al., 2018) though so far, even if badgers and wild 34

boars are able to transmit M. bovis infection to cattle, these species are not considered long-term maintenance 35

hosts in the bTB endemic areas in France (Payne, 2014). 36

37

However, due to an increasing number of M. bovis cases in wild species, a national surveillance programme 38

of M. bovis in wildlife named ‘Sylvatub’ has been launched in September 2011 (Réveillaud et al., 2018; Rivière 39

et al., 2012). This programme aims at detecting and monitoring M. bovis infection in wild species such as wild 40

boar (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus) and European badger (Meles meles) 41

populations, by means of both event-based and targeted surveillance strategies. Sylvatub is a participatory 42

monitoring programme (sensu Danielsen et al., 2003), i.e. carried out with the help of local stakeholders 43

such as hunters associations, pest control officers, trapper associations, veterinary associations, livestock 44

health defense associations and epidemiologists (Réveillaud et al., 2018). Briefly here, depending on the 45

assessed bTB risk in a given department (French administrative division), three levels of surveillance can be 46

implemented. Level 1 is implemented in a department if no domestic or wild animal has been found infected 47

(relying on the post-mortem examination of hunted or found dead animals). Levels 2 and 3, which are of 48

interest for us in this study, are implemented in departments with sporadic outbreaks in cattle (level 2) and 49

in departments with several outbreaks in cattle and/or cases in wildlife (level 3). In level 3 departments, an 50

at-risk area is defined. This at-risk area is composed of an infected area (communes where the infection 51

has been detected in domestic and/or wild animals – a commune being the smallest French administra- 52

tive subdivision) and a buffer zone (communes neighbouring the infected areas). Trapping is carried out 53

in all the communes of the at-risk area. In level 2 departments, a prospection zone is defined within 2 km 54

from the pastures of infected farms and trapping is restricted to this area (for details, see Réveillaud et al., 2018). 55

56

Three main clusters of M. bovis infection have been discovered in France during the last 20 years in badger 57

and wild boar populations following an increased prevalence in cattle farms (Delavenne, Pandolfi, et al., 2019) 58

and are being followed up by Sylvatub: Burgundy (initially discovered in wild boar in 2002, and in badgers after- 59

wards), Dordogne/Charentes (initially discovered in red deer in 2010, and in wild boar and badgers afterwards), 60

and Bearn (initially discovered in wild boar in 2005 and in badgers afterwards; Fig 2D). The data collected by this 61

programme are used to monitor the spatial extension of the infection as well as its progression within these 62

already infected wild populations, by estimating the prevalence level of the infection in badgers in the different 63

clusters. Since the prevalence is simply the proportion of the population that is infected, it is easily understood 64

by non-specialist local communities, which is important to keep stakeholders informed and involved in the 65

programme. Of course, cattle bTB prevalence and incidence are key stone parameters to follow, especially to 66

maintain the national official free status, but because of the multi-host system in place, the sole monitoring 67

of cattle prevalence would not capture the complex epidemiological situation of bTB in an area. Therefore, 68

estimating such a parameter in wildlife populations, easily comparable from one year to another, would also 69

be essential to monitor the epidemiological situation and evaluate the impact of the control measures. 70
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71

However, an ongoing issue in wildlife epidemiology is the difficulty to estimate prevalence in wild populations, 72

as the sampling of animals used for this estimation cannot be entirely controlled. Indeed, the population 73

is usually sampled using capture methods (e.g., traps for badgers), and the prevalence is usually estimated 74

from the sample of captured animals, under the assumption that these animals are a random sample of the 75

population (which therefore ignores the possible capture bias such as the uneven behavior of the animals 76

towards the traps and the logistical constraints that can affect the placement of traps). Moreover, in the case 77

of participatory monitoring programmes, the participating local communities generally already have their own 78

objectives (e.g. wanting to trap more animals close to some given farms during certain years, and close to 79

others during other years) in addition to the Sylvatub objectives. Thus, the monitoring protocols cannot be too 80

rigid in participatory programmes implying volunteers (e.g. Pocock et al., 2015). However, the spatial structure 81

of the infection must be accounted for in the estimation of the prevalence or any related indicator in a given 82

population. 83

84

In addition, another estimation problem occurs when the sampled species is characterized by a social 85

structure that makes trapped animals non-independent from each other. For example, badgers typically live in 86

social groups sharing the same sett and mutually defend a group territory (Roper, 2010). As a consequence, a 87

correlation of the infection status is expected among animals trapped at a given place (e.g. Delahay et al., 2000): 88

when one trapped animal is infected, it is likely that other animals trapped at the same place belong to the 89

same group, and therefore are also infected. Moreover, it has been shown that bTB infection in badgers and 90

cattle are spatially associated (Bouchez-Zacria, Courcoul, et al., 2018; Bouchez-Zacria, Payne, et al., 2023) and 91

therefore badgers trapped in the vicinity of an infected farm are more likely to be infected. Not accounting for 92

this correlation when estimating the prevalence may lead to an overestimated precision (Hisakado et al., 2006). 93

94

A last difficulty occurs when the sensitivity and specificity of the tests used for the diagnostic are not perfect: 95

not all infected (resp. non-infected animals) are identified as such by these tests; there may be false-positives 96

and false-negatives. Ignoring this imperfect measure of the infection status can lead to the biased estimation 97

of the prevalence (Dohoo et al., 2003). Moreover, if the tests used for this diagnostic (and the corresponding 98

sensitivity/specificity) change with time, the assessment of the infection progression based on the uncorrected 99

prevalence estimation may also be biased. 100

101

In this study, we focus on the targeted surveillance of badgers, which is carried out in communes character- 102

ized by surveillance level 2 and 3 (representing 80% of the data collected in the framework of Sylvatub between 103

2013 and 2019): in each identified bTB cluster, traps are set up by members of Sylvatub in the communes of 104

the at-risk areas, and a M. bovis infection is searched on a subsample of the trapped badgers (the proportion 105

and spatial distribution of tested animals depends on the number of trapped animals, trap location and annual 106

sampling objectives). We use these trapping data to develop a complex Bayesian model and provide insight 107

into how the proportion of infected badgers vary in space and time in the three French bTB clusters, accounting 108

for the complex spatial structure of the infection, the correlation between infection status of animals trapped at 109

the same place and the limited sensitivity of the diagnostic tests. Then, we use this model as a basis to develop 110

simpler indicators of the prevalence that also account for all the aforementioned difficulties. These simpler 111

indicators can be easily understood by all the stakeholders and used to monitor both the mean prevalence 112

level and the mean prevalence trend over a given period. Our work in this paper is summarized on Fig 1. 113
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Figure 1. Summary of the models fitted in this paper. For each cluster (here illustrated with the

Dordogne/Charentes cluster), our dataset consists in a sample of badgers trapped in different communes

during different years, tested for M. bovis. We first fit a complex Bayesian model to this dataset accounting for

many characteristics of the infection (left part). We then focus on highly infected communes and use the

average predictive comparison to estimate the mean proportion of the cluster population becoming infected

in one year, and we use the model to estimate the mean prevalence in these infected communes during the

year in the middle of the period. We then fit a much simpler linear regression (right part) on the data collected

in the highly infected communes, which allow to directly produce estimates of the mean proportion of the

cluster population becoming infected in one year, and of the mean prevalence in the cluster population during

the year in the middle of the study period. Simulations indicate that the two approaches return nearly

identical results.

Material and methods 114

Sylvatub programme and database 115

The national surveillance system is described in details in Réveillaud et al. (2018). Briefly here, in the com- 116

munes from level 2 and 3 departments (i.e., communes from infected areas), trapping and culling badgers is 117
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implemented as a control measure aiming at reducing badgers abundance. To do so, licensed field stakeholders 118

(hunters, trappers, pest control officers) trap badgers, mostly between March and August. Trapped badgers are 119

culled, and sent to the local veterinary laboratory for necropsy andM. bovis testing in the framework of Sylvatub. 120

Not all dead animals are tested: national prescription is to analyze at most 2 animals in each commune and 121

each year, which we suppose in the following to be a random sample of the sent animals. The result of the test 122

for each analyzed animal is stored in a local database and then compiled in the national Sylvatub database. 123

Trappers are encouraged to place their traps in the vicinity of bovine farms and to cover the entire infected areas. 124

125

As Sylvatub was launched in 2011 and was not yet well-established before 2013, our study period therefore 126

covers 2013 to 2019. The set of communes where targeted surveillance was authorized at least one year 127

between 2013 and 2019 defines three main spatially connected sets, which are hereafter calledM. bovis clusters 128

(Fig 2D). The Dordogne/Charentes cluster covers 7698 km2 and is composed of 413 communes; the Burgundy 129

cluster covers 4254 km2 and is composed of 254 communes; the Bearn cluster covers 3222 km2 and is com- 130

posed of 196 communes. Themedian surface of a commune is 12 km2 (interquartile range: 7.2 km2 to 18.3 km2). 131

132

Following the necropsy, two types of first-line tests were carried out on animal samples, depending on 133

the period: (i) from 2013 to 2015, the first-line test was the bacterial culture performed on sampled tissues 134

of all tested animals, following the protocol established by the French NRL (NFU 47-104) for isolation of M. 135

bovis; (ii) since 2016, the first-line test was real-line PCR performed after DNA extraction from a pool of lymph 136

nodes (retropharyngeal, pulmonary and mesenteric) and from organs with gross lesions; molecular typing 137

(spoligotyping) was performed either on MTBC isolates or directly on PCR-positive sample DNA (see Réveillaud 138

et al., 2018, for technical details on these two procedures). The sensitivity of the two techniques differs: the 139

sensitivity of the microbiological cultures is estimated at 50%, whereas the sensitivity of the PCRs is estimated 140

at 75% (Réveillaud et al., 2018; Riviere et al., 2015). The specificity is supposed to be equal to 100% for these 141

two tests (i.e., no false positives). 142

143

During the study period, 4590 badgers were trapped and sent to the lab in Dordogne/Charentes, among 144

which 4379 badgers were actually tested. Interpretable results were obtained for 4323 of them (i.e. in average 145

1.5 badgers per commune and per year; interquartile range: 0 animals to 2 animals tested per commune 146

and per year). In Burgundy, 3042 badgers were trapped and sent to the lab, among which 2900 were actually 147

tested, and interpretable results were obtained for 2786 of them (in average 1.56 animals tested per commune 148

and per year; interquartile range: 0 to 2 animals tested per commune and per year). Finally, in Bearn, 2223 149

badgers were trapped and sent, among which 1999 were tested, and interpretable results were obtained for 150

1970 of them (in average 1.43 animals tested per commune and per year; interquartile range: 0 to 2 animals 151

tested per commune and per year). 152

153

For each trapped animal, the following data were stored: date of trapping, name of the commune where the 154

animal has been trapped, results of the test (M. bovis positive, M. bovis negative), type of first-line test carried 155

out (bacterial culture; PCR), date of the analyses, surveillance level of the commune of trapping, and sex and 156

age class (young; adult) of the animals (though this latter information is not systematically reported by the field 157

partners). 158

159

A Bayesian model of the infection 160

Model fit 161

For each of the three M. bovis clusters, we fitted a Bayesian model describing the dynamics of the infection 162

process. Consider one particular cluster. Let Nit be the known number of badgers trapped and tested in 163
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the commune i during year t. Let yit be the unknown number of badgers actually infected among thoseNit 164

animals. Let zit be the known number of animals for which the test indicated a M. bovis infection among those 165

yit infected animals. We fitted the following hierarchical Bayesian model: 166

zit ∼ Binomial(yit, st) (1)

yit ∼ Beta-Binomial(Nit, pit, ρ) (2)

log
pit

1− pit
= α+ β × t+ ui (3)

ui|u−i ∼ N (
1

di

∑
j∼i

uj ,
1

di

1

τ
) (4)

The equation (1) accounts for the known sensitivity st of the tests used during the year t (i.e., st = 0.5 for 167

microbiological culture, and st = 0.75 for PCR): the number zit of animals for which a M. bovis infection was 168

diagnosed is a random subset of the unknown number yit of animals actually infected (which is a latent variable 169

in this model). Each infected animal is detected as such with a known probability st. 170

171

We supposed a beta-binomial distribution for the unknown number of infected animals yit (equation (2)). 172

This distribution accounts for a possible correlation between the infection status of two animals trapped the 173

same year in the same commune, and is parameterized by the known number Nit of badgers trapped in 174

commune i during year t, the unknown prevalence pit of M. bovis infection in commune i and year t, and the 175

unknown correlation coefficient ρ (estimated by the model fit) between the infection status of two animals 176

trapped in the same commune. The parameterization of the beta-binomial distribution as a function of a 177

probability (here, the prevalence) and a correlation coefficient was proposed by Hisakado et al. (2006) as a 178

means to account for the correlation between binary variables in binomial counts. Appendix A give the formal 179

expression of this distribution with this parameterization, and how it relates to the parameterization classically 180

used by statistical software such as R. 181

182

The prevalence pit is itself modeled by a logistic regression depending on a commune effect and a linear year 183

effect (also estimated by the model fit; equation (3)). The effects ui of the communes on the prevalence are not 184

independent from each other. Indeed, because of the strong spatial structure of the infection in the clusters, 185

there is a high probability that the prevalence is high in a commune if it is high in neighbouring communes. 186

We account for this spatial autocorrelation of the commune effects by modelling these random effects ui with 187

an intrinsic Conditional AutoRegressive (iCAR) model (equation (4), see also Rue and Held, 2005). Thus, the 188

random effect ui of the commune i is supposed to be drawn from a Gaussian distribution with mean equal to 189

the mean of the random effects of neighbouring communes. In equation (4), i ∼ j means that commune i 190

shares a boundary with commune j; u−i is the vector of commune random effects excluding the effect ui, and 191

di is the number of communes sharing a boundary with commune i. The parameter τ is estimated by the 192

model fit, describing the precision (inverse of the variance) of the random effects ui. 193

194

We defined weakly informative priors for the parameters of the model. We fitted this model by MCMC, 195

using 4 chains of 1 million iterations each, after a burn-in period of 3000 iterations. To save some memory 196

space, we thinned the chains by selecting one sample every 1000 iterations. We checked the mixing properties 197

of the chains both visually and using the diagnostic of Gelman and Rubin (1992). We checked the goodness 198

of fit of our model, using the approach recommended by Gelman and Meng (1996): each MCMC iteration r 199

generated a sampled value θr of the vector of parameters of interest θ = (τ, α, β, ρ,u)t. For each simulated 200

value θr , we simulated a replication of the Sylvatub dataset (i.e., we simulated a random infection status for 201

each trapped animal of the dataset with the fitted model parameterized by the vector simulated by the r-th 202

MCMC iteration). We then compared summary statistics calculated on the observed Sylvatub dataset with the 203

distribution of the same statistics derived from the simulated datasets. All these checks indicated a satisfactory 204

fit of the model (see appendix D for details on these checks and on model fit). 205
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206

Estimation of the prevalence level and trend from the model 207

First, we used the fitted model to estimate the trend over time of the prevalence in each cluster. On a logit 208

scale, the average change with time of the prevalence is reflected by the coefficient β in equation (3). It is well 209

known that in a logistic regression, the exponential of a coefficient (here β) is equal to the odds-ratio of the 210

corresponding variable (here the time t), i.e. {pt/(1− pt)}/{pt−1/(1− pt−1)}, which in our model measures 211

the amount by which the odds p/(1− p) of the infection is multiplied in one year (Hosmer and Lemeshow, 212

2000, p. 50). However, odds-ratios are difficult to understand by stakeholders, which can be problematic in a 213

participatory programme context. As noted by King and Zeng (2002), “we have found no author who claims to be 214

more comfortable communicating with the general public using an odds ratio. Similarly, Gelman and Hill (2006, p. 215

83) reported “we find that the concept of odds can be somewhat difficult to understand, and odds ratios are even 216

more obscure. Therefore, we prefer to interpret coefficients on the original scale of the data”. In this section, we 217

follow this last recommendation, by calculating the average rate of change of the prevalence in a cluster using 218

the fitted model. 219

220

Due to both the nonlinearity of the logit transform used in the model and the strong spatialization of the

infection, the estimation from the model of the average proportion of animals becoming infected in one year

can be tricky. Gelman and Pardoe (2007) proposed an approach to estimate this rate of change, based on the

concept of predictive comparison. For a given commune v and a given value of the vector of parameters θ of

the model, the predictive comparison measures the expected rate of change of the prevalence p when the

year changes from t(1) to t(2):

δt(t
(1) → t(2), v, θ) =

E(p|t(2), v, θ)− E(p|t(1), v, θ)
t(2) − t(1)

This quantity, easily calculated with our model, varies as a function of these inputs (the years compared, the 221

commune, and the value of the vector of parameters). To summarize the overall effect of the year on the 222

prevalence in a given dataset, Gelman and Pardoe (2007) proposed to calculate the mean value ∆t of the 223

predicted comparisons over the probability distribution of the inputs (years and communes) estimated with the 224

data, and over the posterior distribution of the parameters. This averaging is equivalent to consider all pairs of 225

animals (i, j) in the data, corresponding to pairs of transition of (ti, vi) to (tj , vj ) in which the commune vi = vj 226

is held constant. Technical details on the calculation of the Average Predictive Comparison (APC) are given in 227

appendix B. When positive, the APC estimated the proportion of the population animals becoming infected 228

in one year in each cluster. When negative, the APC estimated the proportion of the population becoming 229

sane in one year due to the death of infected animals, the birth of uninfected animals, and a decrease of the 230

infection rate, which collectively lead to a decreasing prevalence in the population. 231

232

The APC gives an index of the dynamics of the infection in a cluster. We also estimated another statistic 233

summarizing the mean prevalence level in a cluster during the study period. Because the prevalence varies 234

in space and time, we used the equation (3) to estimate the expected prevalence in each commune during 235

the middle year of our study period (i.e. for the year t =2016), and we averaged it over the communes of the 236

cluster. This gave an idea of the importance of the infection in each cluster during the studied period. 237

238

The calculation of both the APC and the mean prevalence level during the middle year was restricted to the 239

set of highly infected communes (i.e. communes for which ui > 0 in equation (4)), to allow the comparison 240

with the simpler indicators developed in the next section. 241

242
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Development of simple indicators ofM. bovis prevalence level and trend 243

Although the model developed in the previous sections is useful to understand the spatialization and 244

dynamics of the infection process, it is too complex to be used on a regular basis by the stakeholders of 245

Sylvatub to assess how the level of prevalence changes with time. Instead, we propose in this section two new 246

indicators that can be estimated with the trapping data collected by the network. These indicators estimate in 247

a simpler way the same quantities that were introduced in the last subsection, i.e. the mean prevalence level 248

in the middle year of the study period and the mean proportion of animals becoming infected in one year. 249

250

Consider a given M. bovis cluster during a given study period with years t = 1, 2, ..., T , during which n 251

animals have been collected by the Sylvatub network. For each animal i, letBi be the infection status returned 252

by the test (coded as 0/1) and si be the sensitivity of the test used for this diagnostic. We can derive two 253

useful indicators with the classical simple linear regression fitted to the set of animals trapped during the study 254

period: 255

Bi/si = a+ b× t̃i + εi (5)

where t̃i is the centred year (i.e. ti− t̄, where t̄ is the middle year of the study period), and εi is a residual. It can 256

be easily demonstrated that, in this model, the coefficient a corresponds to the average prevalence observed 257

in the middle year of the study period, and the coefficient b corresponds to the proportion of the badger 258

population that becomes infected during a year in average during the study period (i.e., the same quantity as 259

the APC calculated for the Bayesian model, see appendix C for a detailed explanation of the rationale). 260

261

This approach accounts for the imperfect sensitivity of the tests used for the M. bovis diagnostic, but does 262

not account for the spatial structure of the infection in the cluster under study. We will show (see results 263

section) that there is a very strong spatial structure of the infection in the three M. bovis clusters. Therefore, 264

not accounting for this structure can lead to biased estimates if the trapping pressure in highly infected areas 265

varies between years. We therefore suggest to calculate this prevalence indicators by focusing only on highly 266

infected communes (i.e. communes characterized by an estimated random effect ui greater than 0 in equation 267

(4)), so that the remaining unaccounted spatial variability of infection can be ignored. This approach also 268

ignores the correlation possibly caused by the social structure of the badger population and by other local 269

factors (e.g. proximity to an infected farm), but we will show that this correlation is negligible in the three 270

clusters (see results). 271

272

Assessing the indicators with the Bayesian model 273

The complex Bayesian model described by equations (1) to (4) and the simpler regression model described 274

by equation (5) are two models of the same process, though the latter is much simpler. Both can be used 275

to estimate the mean prevalence level during the middle year of the study period and the mean propor- 276

tion of the population becoming infected in one year in a cluster. The simple regression model imperfectly 277

accounts for the spatial structure of the infection and ignores the correlation caused by local factors (e.g. 278

social structure, proximity to infected farms), but it is much easier to understand and to implement by stake- 279

holders. This lattermodel is therefore proposed to stakeholders as ameans tomonitor the infection in a cluster. 280

281

We carried out two sets of simulations to assess the ability of the simpler regression model to estimate 282

the two target quantities. For these two sets of simulations, we simulated different infection situations, using 283

the Dordogne/Charentes cluster as an example. We simulated datasets covering 7 years in this cluster. We 284

generated a number of trapped animals for each year and each commune of the cluster from a binomial 285

negative distribution with mean µ and dispersion parameter θ = 0.48 (value estimated from our dataset by 286

maximum likelihood). In each set of simulations, we simulated four possible values of µ corresponding to four 287
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levels of trapping pressure: µ = 0.5 animals trapped per commune and per year in average, µ = 1, µ = 3 and 288

µ = 10 (as a point of comparison, remember that in our dataset, µ ≈ 1.5 in all clusters). For each simulated 289

animal, we simulated a probability of infection with the help of equation (3). Different values of the slope β and 290

intercept α were specified for the different simulated situations (see below). We simulated an iCAR process to 291

generate random commune effects ui using equation (4), setting τ = 0.73 (corresponding to the mean value 292

estimated by the model with the Sylvatub dataset in the Dordogne/Charentes Cluster, see results). For each 293

animal, we could calculate the probability of infection pit from the vector of (α, β, {ui}) with equation (3). We 294

then simulated a random infection status for each animal using equation (2), fixing the correlation coefficient 295

ρ = 0.04 (also corresponding to the value estimated in the Dordogne/Charentes cluster using the Sylvatub 296

dataset, see results). Finally, we used equation (1) to simulate an imperfect but variable sensitivity (sensitivity 297

equal to 0.5 during the first three years and 0.75 during the four last years). 298

299

In the first set of simulations, we wanted to assess the ability of our regression model to estimate the 300

trend over time of the prevalence in two different situations with regard to its change with time: (i) low but 301

increasing prevalence: we simulated a M. bovis infection rarely present on the study area during the first year 302

(≈ 5% of the animals are infected in a typical commune of the cluster) with a prevalence increasing with time. 303

More precisely, we set the intercept α = −3.1 in model (3) and the slope β of the year was randomly drawn 304

from a uniform distribution bounded between 0 and 0.4; (ii) high prevalence, increasing or decreasing: we 305

simulated a frequent infection during the first year of the study period (≈ 20% of the animals are infected in 306

a typical commune) with a prevalence either increasing or decreasing. More precisely, we set the intercept 307

α = −1.38 and the slope β randomly drawn from a uniform distribution bounded between -0.4 and 0.4. For 308

each combination of trapping pressure µ and simulated situation (either low but increasing prevalence or high 309

prevalence), we simulated 1000 datasets. For each dataset, we estimated the true proportion∆u of animals of 310

the area becoming infected in one year in the highly infected communes (i.e. those with simulated random 311

effect greater than 0) with the APC procedure. We applied the linear regression (5) to the data simulated in 312

these communes. We then compared the estimated slope b with the APC∆u of the simulated model, which 313

should in theory be equal if the two models are equivalent. 314

315

In the second set of simulations, we wanted to assess the ability of our regression model to estimate the 316

mean prevalence level during the middle year. We simulated data with our Bayesian model, using different 317

values of the intercept α = −4,−3,−2,−1, 0, describing different mean prevalence levels. We then randomly 318

sampled a slope β from a uniform distribution bounded between -0.4 and 0.4. We simulated 1000 datasets 319

for each combination of value of intercept α and of trapping pressure µ. For each simulated dataset, we 320

considered only the highly infected communes (i.e., with ui > 0) and we calculated the true mean prevalence 321

over the area during the middle year of the study period. We then applied the linear regression (5) to the 322

data simulated in these communes. We then compared the estimated slope a with this true mean prevalence, 323

which should be equal if the two models are equivalent. 324

325

Computational aspects 326

All our analyses and simulations were carried out with the R software (R Core Team, 2023). We used the 327

package nimble for model fit (Valpine et al., 2017), coda for the analysis of the fit (Plummer et al., 2006), and 328

tidyverse (Wickham and Grolemund, 2017) and ggplot2 (Wickham, 2016) for data manipulation and graphi- 329

cal display respectively. We have programmed an R package named badgertub, available at https://github.com/ 330

ClementCalenge/badgertub, containing all the code and data used to fit the model. It can be installed in R with 331

the package devtools , using the function devtools::install_github("ClementCalenge/badgertub", 332

ref="main"). This package includes a vignette describing how the user can reproduce easily the model 333

fit and simulations (vignette available with the command vignette("badgertub") once the package has 334
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been installed). This vignette also serves as the supplementary material of the paper and contains additional 335

information on our model (e.g., precisions on the parameterization of the beta-binomial distribution, formal 336

description of the iCAR model, etc.). 337

338

Results 339

Model fit 340

The estimated parameters of the model for each cluster are presented in Tab 1. The situation was con- 341

trasted between the three clusters: the infection was strongly decreasing in Burgundy, strongly increasing in 342

Charentes/Dordogne and seemed stable in Bearn, as revealed by both the slope β of the year in the model and 343

the APC (i.e. proportion of animals becoming infected in one year). The correlation ρ between the infection 344

status of animals trapped in the same commune was actually rather small in all clusters (≈ 0.03), revealing 345

that the correlation caused by local factors (social structure, local environment, etc.) was not causing a strong 346

dependency between animals of a commune. On the other hand, there was a strong spatial structure in all the 347

studied clusters, with highly infected areas and low risk areas in every cluster (see Fig 2). 348

349

Table 1. Main results derived from the model fit to the three M. bovis clusters. We present here: (i) the

parameters of interest in the model (first three rows are the parameters of the model: slope β associated to

the year, correlation coefficient ρ between infection status of animals trapped in the same commune, standard

deviation 1/
√
τ of the commune effects), (ii) the average predictive comparison (APC) estimating the proportion

of the population getting infected in one year as estimated by the complex Bayesian model and by the simpler

regression in the highly infected communes (see text), (iii) the mean prevalence level in the highly infected

communes in the middle year of the study period (see text) as estimated by the complex Bayesian model and

by the regression. For each parameter and each cluster, we give the point estimate (mean of the posterior

distribution) and the 90% credible interval

Parameter Dordogne/Charentes Burgundy Bearn

β 0.18 [0.11, 0.25] -0.29 [-0.39, -0.2] 0.05 [-0.04, 0.14]

ρ 0.04 [0.02, 0.08] 0.02 [0.01, 0.04] 0.04 [0.02, 0.08]

1/
√
τ 1.17 [0.87, 1.5] 1.58 [1.11, 2.04] 1.08 [0.69, 1.54]

APC (model) 0.018 [0.009, 0.027] -0.028 [-0.039, -0.017] 0.005 [-0.008, 0.018]

APC (regression) 0.029 [0.02, 0.037] -0.034 [-0.043, -0.024] 0.008 [-0.002, 0.018]

Mean Prevalence (model) 0.126 [0.109, 0.143] 0.08 [0.065, 0.097] 0.112 [0.092, 0.134]

Mean Prevalence (regression) 0.157 [0.141, 0.174] 0.117 [0.098, 0.136] 0.133 [0.113, 0.153]

In the three clusters, there was a close agreement between the parameters estimated by the Bayesianmodel 350

and the same parameters estimated by the simple linear regression (Tab 1), though the mean prevalence 351

seems either slightly overestimated by the regression approach in the three clusters, or slightly underestimated 352

by the Bayesian model. 353

354

The two sets of simulations revealed that the two indicators estimate correctly the mean prevalence and 355

the mean proportion of animals becoming infected fixed in our simulated situations. On one hand, the first set 356

of simulations of two contrasted situations (high prevalence or low and increasing prevalence) showed that 357

the slope of the year in the regression agreed closely with the true simulated proportion of animals becoming 358

infected in one year, whatever the simulated trapping pressure (Fig 3). Of course, the uncertainty was larger 359

when the trapping pressure was lower (the cloud of points was more dispersed around the line y = x when µ 360
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Figure 2. Location of the three M. bovis clusters in France (D) – the limits of the French departments are

displayed on this map – as well as the median prevalence estimated by our Bayesian model for each commune

in the Dordogne/Charentes cluster (A), the Burgundy cluster (B), and the Bearn cluster (C). A common

colorscale is used for all clusters (inset in the Bearn map).

was low), but this indicator estimated correctly the target proportion. 361

362

On the other hand, the second set of simulations of different prevalence levels under different trapping 363

pressures showed that there was a close agreement between the intercept of the linear regression and the 364

true mean prevalence level during middle year in highly infected communes (Fig 4). Similarly, the uncertainty 365

was larger for low trapping pressures. 366

367

Table 2. Coverage probability of the 95% confidence interval on the proportion of animals of a cluster getting

infected in one year estimated with the simple linear regression, estimated by simulations for the two tested

settings (either high prevalence or low but increasing prevalence) and the 4 trapping pressure. The value of µ

corresponds to the mean number of animals trapped in each commune.

Situation Trapping Pressure Coverage Probability

High µ = 0.5 0.93

High µ = 1 0.94

High µ = 3 0.91

High µ = 10 0.84

Low Increasing µ = 0.5 0.94

Low Increasing µ = 1 0.94

Low Increasing µ = 3 0.89

Low Increasing µ = 10 0.83

Since we use a linear regression to estimate our two indicators, we can derive confidence intervals on these 368
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Figure 3. Comparison of the proportion of animals becoming infected in one year estimated using the

regression indicator (see text) with the true value, estimated by simulations for the two different situations

(High prevalence = top row; Low but increasing prevalence = bottom row) and the different trapping pressure

(mu corresponds to the mean number of animals trapped per commune). The straight line is the line of

equation y = x.

two parameters using the classical formulas derived from the normal theory. We calculated the coverage 369

probability of the 95% confidence intervals for the different simulated situations (Tab 2 and Tab 3). In both 370

sets of simulations, the coverage probability of 95% confidence intervals on the two indicators was closer to 371

90% than to 95% for moderate trapping pressure. When the trapping pressure was extremely high (i.e. 10 372

animals trapped in average in each commune of a cluster), the coverage probability of the 95% confidence 373

interval decreased to ≈ 80% for the proportion of animals becoming infected in one year, and to ≈ 60% for 374

the mean prevalence level during the middle year. 375

376

Discussion 377

We developed a complex Bayesian model to describe how the infection status of badgers changed in space 378

and time in three M. bovis clusters in France, accounting for the resolution of the data (commune scale), the 379

spatial structure of the infection, the imperfect and variable sensitivity of the diagnostic tests, and the possible 380

correlation of the infection status of badgers within the same commune. This model allowed to estimate 381

both the mean prevalence level and the mean proportion of badgers becoming infected in one year. We also 382

developed an alternative, much simpler model of the infection process, based on a classical linear regression, 383

which also allowed to easily estimate these two quantities in the highly infected communes only. Simulations of 384

the complex model showed that the two simpler indicators were a good approximation of the true quantities, 385

and could easily be used by stakeholders to estimate the key parameters of the infection process in the most 386

infected communes. 387
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Figure 4. Comparison of the mean prevalence level during the middle year estimated using the regression

indicator (see text) with the true value, estimated by simulations for five different prevalence levels (simulated

by fixing different values of the intercept alpha) and the different trapping pressure (mu corresponds to the

mean number of animals trapped per commune). The straight line is the line of equation y = x.

388

Basically, if the tests used to diagnose M. bovis were characterized by a sensitivity of 100%, our regression 389

approach would be equivalent to a simple linear regression of theM. bovis infection status of each animal coded 390

as a binary variable as a function of the year (the form of the response variable Bi/si in equation (5) is just a 391

way to account for the imperfect sensitivity of the tests). The suggestion to use a classical linear regression to 392

model what is basically a binary variable can seem surprising, given that such variables are usually modelled 393

with logistic regressions. We preferred to fit a classical linear regression, since its coefficients (intercept and 394

slope of the year) are directly interpretable as the mean prevalence level and proportion of animals becoming 395

infected in one year respectively. Of course, using a classical linear regression to predict a binary variable leads 396

to the violation of several hypotheses underlying this method. However, this violation is not really a problem 397

when the aim is to estimate the regression parameters, as long as we do not want to use the regression model 398

to predict the infection status of each animal. Thus, as long as we are only interested in the slope and intercept 399

of the regression, it does not matter that the linear regression can in theory predict probabilities of infection 400

greater than 1 or lower than 0. Similarly, as noted by Gelman and Hill (2006, p. 46), “for the purpose of estimating 401

the regression line (as compared to predicting individual data points), the assumption of normality is barely important 402
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Table 3. Coverage probability of the 95% confidence interval on the mean prevalence during the middle year

in a M. bovis cluster estimated with the simple linear regression, for the different tested prevalence levels

(Intercept α, see text) and for the different trapping pressure µ. The value of µ corresponds to the mean

number of animals trapped in each commune.

Intercept TrapPress Probability

α = -4 µ = 0.5 0.91

α =-4 µ = 1 0.90

α =-4 µ = 3 0.78

α =-4 µ = 10 0.58

α =-3 µ = 0.5 0.94

α =-3 µ = 1 0.90

α =-3 µ = 3 0.79

α =-3 µ = 10 0.56

α =-2 µ = 0.5 0.93

α =-2 µ = 1 0.90

α =-2 µ = 3 0.80

α =-2 µ = 10 0.64

α =-1 µ = 0.5 0.92

α =-1 µ = 1 0.90

α =-1 µ = 3 0.77

α =-1 µ = 10 0.58

α =0 µ = 0.5 0.92

α =0 µ = 1 0.92

α =0 µ = 3 0.86

α =0 µ = 10 0.66

at all”. Finally, the violation of the homoscedasticity assumption (equal variance of the residuals for all the 403

predicted values) is also a minor issue in this case (Gelman and Hill, 2006, p. 46). The greater interpretability 404

of the regression coefficients and the easier application of the linear regression has led several authors to 405

recommend this method instead of the logistic regression for binary variables (Gomila, 2021; Hellevik, 2009), 406

as long as the model is not used to predict new data points. Note however that the departure from the normal 407

distribution led to low coverage probabilities for the two parameters (and especially the mean prevalence level 408

at mid-period) when the sample size was large. Indeed, in these conditions, the departure from normality has 409

a stronger effect on the estimation of the precision on the parameters. But as long as the mean sample size in 410

a commune is not too large (say, less than 3 animals per commune and per year), the coverage probability of 411

the 95% confidence intervals derived from the linear regression for these parameters is close to the nominal 412

level, and can provide rough first approximation of the uncertainty of the target quantities. 413

414

The correlation between infection status of badgers trapped in the same commune during a given year was 415

low (≈ 0.03), and we showed that indicators ignoring it were not characterized by strongly biased measures 416

of precision. Other authors have found that different badgers of the same sett have a larger chance to be 417

infected (e.g. Delahay et al., 2000; Weber et al., 2013). However, our spatial resolution is much coarser than 418

that in the study of these authors: we work at the commune scale (median area of 12 km2), whereas the 419

badger home-range rarely exceeds 4 km2 and is often much smaller (Elmeros et al., 2005; Payne, 2014). The 420

traps set up in a commune often allowed to capture badgers from different social groups, thereby limiting the 421

resulting correlation between infection status. Moreover, the local environmental context may be very variable 422

around different traps within a given commune (e.g. some places can be very close to an infected farm whereas 423

other can be much further), which also limits this correlation. In addition, on a larger scale, in the complex 424
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multi-host system encountered in France, the source of M. bovis infection for badgers might be various and 425

may also come from other wild hosts such as wild boar (whose movements may exceed the commune scale). 426

If the traps are set where these interspecies transmissionmay occur, it limits the correlation at a commune scale. 427

428

Our complex model identified a very marked spatial structure of the infection in the three studied M. bovis 429

clusters, and both our complex model and the simpler regression approach assumed that this structure 430

was stable in time (i.e., the areas with the highest prevalence remain the same every year; even if the mean 431

prevalence increases or decreases in time, it changes in the same way everywhere). In statistical terms, we 432

supposed the additivity of the time and space effects on the prevalence. If the spatial distribution of the 433

infection had changed over time, which can occur for some disease (e.g. with some clusters becoming larger 434

with time, see Wobeser, 1994, p. 29), this assumption would be violated. However, this assumption of additivity 435

is reasonable for the M. bovis infection, as demonstrated by both a preliminary exploratory analysis of our 436

dataset and by epidemiological properties of this infection. On one hand, the preliminary fit of a simplistic 437

generalized additive model to predict the infection status of trapped badgers as a function of space and time 438

showed that space-time interaction could be ignored in all clusters and that the spatial distribution of the 439

infection in badgers was stable over time during our study period (see appendix E for more details). On the 440

other hand, this stability can also be explained by the infection dynamic of M. bovis in relation to the structure 441

of the multi-host system. Indeed, infection of the badger population may result from two different dynamics: 442

a within-species transmission related to the social structure of the badgers population, and a between-species 443

transmission caused by the contacts with infected animals of other species – in our context, mainly cattle 444

and wild boar. The relative importance of those two dynamics varies according to the context. For instance, 445

in Burgundy, in a recent study, we found that the spatial structure of the infected badgers population was 446

highly related to the spatial structure of the pastures of infected cattle (Bouchez-Zacria, Payne, et al., 2023), 447

suggesting a between-species transmission dynamic still very active 20 years after infection was detected in 448

both cattle and badgers populations. In any case, within- and between-species infection dynamics logically 449

lead to a strong and stable spatial structure of badger infection because of (i) the strong social structure of the 450

badger population associated with a small number of dispersing animals that usually move between adjacent 451

groups (Rogers et al., 1998)), (ii) the strong spatial structure of the main external source of infection, i.e. the 452

cattle population, which is relatively stable over the years, and (iii) the M. bovis transmission mode, which 453

involves direct or indirect contacts between animals as well as an infection resulting frequently in a chronic 454

disease (with animals being infectious for a long time). Thus, these elements suggest that the diffusion in 455

space of the M. bovis infection is rather slow so that it is reasonable to suppose that the spatial structure of the 456

infection in a cluster is stable over a period of a few years (say, 5 to 10 years). The two proposed indicators 457

can therefore be used at this time scale to monitor the changes in the infection pattern. In particular, a few 458

informal tests of the indicators seem to indicate that a 5-year scale is an interesting scale to assess the effect 459

of management measures implemented to control the M. bovis infection. When the study period covers more 460

than 10 years, a sliding window in time can be used to fit the linear regression. 461

462

During our study period, we observed different tendencies in the 3 main M. bovis clusters in France. In 463

Burgundy, there was an annual decrease of the proportion of infected badgers between 2013 and 2019, and 464

the mean prevalence in 2016 was estimated at 0.08 (0.065-0.097) with the model whereas in the 2 otherM. bovis 465

clusters the tendency was either an annual increase proportion of infected badgers (Dordogne/Charente) or a 466

stabilisation (Bearn) with slightly higher mean prevalence than in Burgundy: respectively 0.126 (0.109-0.143) 467

and 0.112 (0.092-0.134). The observations in the captured badgers’ population are in line with the bTB situation 468

in the bovine population. Indeed, in Burgundy, the incidence in cattle farms decreased during the same period, 469

which is not the case for the 2 other clusters (Delavenne, Desvaux, et al., 2021). Burgundy strengthened the bTB 470

control measures earlier than in the other regions, especially in terms of early detection of the infected cattle 471

farms and in badgers culling pressure, at least for some years. This is most likely the main reason explaining 472
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such differences, even if differences in the badger population and multi-hosts structures may also have played 473

a role. South West of France (covering the 2 clusters with the higher proportion of infected badgers), is now 474

concentrating the highest number of M. bovis cases (80% of the cattle bTB cases and 94% of the wildlife cases – 475

all species included– in 2018, see Delavenne, Desvaux, et al., 2021) and would still need some years of effort to 476

see an improvement of epidemiological indicators. 477

478

Having a follow-up of such indicators is therefore crucial to assess the efficiency of the measures being 479

applied. In Sylvatub, it will now be easier to reevaluate the developed indicators regularly in the at-risk areas. 480

We demonstrated that our indicators need to be calculated in the most infected communes. In our study, the 481

complex Bayesian model that we used allowed to identify the highly infected communes (i.e., those with a 482

commune random effect greater than the average), so that those communes can be used in later monitoring 483

for the calculation of the indicators. 484

485

If the present indicators are to be used in other situations (e.g., in newly discovered clusters, or in other 486

countries), there are several options to identify those highly infected places. One possibility would be to fit the 487

complex model once, a few years after the time of discovery of the cluster, to identify those communes. But 488

other approaches could also be used. Thus, given the reasonable additivity of the infection at a time scale of a 489

few years, one could try to describe the spatial distribution of the infection risk using data collected over a 490

short period, by ignoring the time dimension. For example, the nonparametric approach of Kelsall and Diggle 491

(1995), which estimate the spatial distribution of the risk by calculating the ratio of two probability densities of 492

positive and negative tests in space, could be used to identify the more infected places. 493

494

We developped this regression approach focusing on the badger populations in the infected areas in France, 495

but it could in theory be used more generally for any infection characterized by an additivity of space and 496

time effects on the prevalence. Thus, preliminary results indicate that this regression approach could also be 497

used for the wild boar in the three main French M. bovis clusters. In this case too, the same Bayesian model 498

provides a good description of the infection (though the spatial structure is much less clear, C. Calenge pers. 499

com.), which suggests that the linear regression indicators proposed for the badger could also be used for the 500

wild boar monitoring. 501
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