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Ticks (Acari: Ixodida) are hematophagous ectoparasitic arachnids that feed on the
blood of vertebrate hosts, posing significant concern due to their unrivaled capacity to
transmit various pathogens, which surpasses those of all other known arthropod vec-
tors [1]. These pathogens include protozoa (e.g., Babesia spp. and Theileria spp.), bacteria
(e.g., Rickettsia spp. and Borrelia spp.), viruses (e.g., Crimean–Congo hemorrhagic fever and
tick-borne encephalitis), and helminths (e.g., Cercopithifilaria) [2–4].

Recent research published by Ostfeld and Keesing [5] investigates the effectiveness of
various methods for reducing tick populations, specifically host-seeking nymphal black-
legged ticks. Additionally, it seeks to understand the potential impact of these tick reduction
methods on human exposure to tick-borne diseases (TBDs), particularly Lyme disease. The
research investigates whether reducing tick populations through acaricidal treatments and
other means actually leads to a reduction in human encounters with ticks and a decrease in
the incidence of TBDs in affected populations. The main conclusion of the research is that
while reducing tick populations holds promise for tick control, its direct impact on reducing
human encounters with ticks and TBDs is not well-established and may be influenced by
various factors that require further investigation.

Environmental factors play significant roles in tick populations and pathogen preva-
lence [6]. Variables like temperature, humidity, and vegetation affect tick abundance and
distribution [6]. Moreover, the presence of suitable hosts influences tick populations and
their ability to acquire and transmit pathogens [7,8]. Changes in land use and habitat can
disrupt ecological dynamics, potentially affecting TBDs prevalence in a region [9,10]. Thus,
environmental factors create a complex interplay that shapes the relationship between ticks
and the pathogens they carry, impacting tick-borne pathogen (TBP) transmission. The
study by Ostfeld and Keesing [5] suggests that these factors result in the emergence of
nonlinear dynamics between tick abundance and human exposure to TBDs. Reducing tick
populations does not proportionally decrease TBDs incidence, and the mechanisms behind
these nonlinearities remain poorly understood.

Modern sequencing techniques have transformed our ability to study bacterial pathogens
and symbionts, opening new avenues for exploring the complex tick microbiome [11–13].
The tick microbiome plays a crucial role in tick physiology, host–pathogen interactions,
and potentially influences pathogen transmission and disease ecology. The significance
of tick microbiome for pathogen transmission cannot be overstated [12]. Could the tick
microbiome and factors influencing it contribute to the nonlinear dynamics between tick
abundance and human exposure to TBDs?

The tick microbiome comprises various microorganisms that can either compete with
or facilitate pathogen growth and colonization [14–16]. For example, one study found that
an increase in the proportion and quantity of the maternally inherited symbiont Rickettsia
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belli in the microbiota negatively correlates with the infection levels of the TBP Anaplasma
marginale in Dermacentor andersoni ticks [17]. Regarding Borrelia, tick microbiome composi-
tion and diversity influence Borrelia acquisition in ticks [18,19]. For instance, the abundance
of Pseudomonas, Bacillus, or Enterobacteriacea negatively correlates with Borrelia burgdor-
feri abundance in nymphal Ixodes scapularis ticks [20]. However, this relationship is not
always hostile. An earlier study showed that a reduction in Francisella-like endosymbionts
was linked to lower infection levels of Francisella novicida in Dermacentor andersoni ticks,
indicating a positive pathogen–endosymbiont relationship [17]. Therefore, various factors
affecting the tick microbiome can indirectly shape the disease ecology and dynamics.

Biotic factors significantly impact tick microbial communities (Figure 1). Nymph
and adult ticks exhibit distinct bacterial profiles influenced by factors like tick species
and geographic location [12]. Tick species are a primary influencer, with different species
having unique adaptations that affect gut microbial communities [21–24]. Life stage also
plays a role, with larvae, nymphs, and adults displaying different feeding behaviors and
microbiome compositions [22,25,26]. Development and molting introduce changes to gut
microbiome composition and diversity. Geographical locations strongly influence tick
microbiome due to diverse wildlife hosts, carrying distinct microorganisms in their blood
and/or skin [27–30]. Regional variations in pathogen prevalence indirectly affect tick
microbiome dynamics [31,32].
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Figure 1. Interplay between abiotic and biotic factors in shaping the tick microbiome and disease
ecology. Blue arrows indicate microorganisms obtained through tick bites. Black arrows represent
maternally inherited tick symbionts acquired through transovarial and transstadial transmission.
Yellow arrows signify microorganisms acquired from the environment including soil and plants
(amended from a previous publication [12]). The figure was generated using BioRender.com.

Notably, ticks spend a substantial portion of their life cycle off-host in the environ-
ment [33], where they can acquire bacteria from the surrounding soil and plants [34].
Interestingly, changes in B. burgdorferi prevalence in ticks have been associated with factors
shaping soil microbial diversity. Forest fragmentation, impacting both host and soil micro-
bial diversity by creating new ecotone habitats [35], has been linked to higher B. burgdorferi
prevalence in ticks [36,37]. However, the influence of land use and soil properties on the tick
microbiome is an area that requires further investigation. During their off-host stages, ticks
acquire bacteria, primarily from the surrounding soil and plants, through direct contact.
This acquisition process involves the proteolytic activity of surrounding bacteria and fungi,
which can penetrate the chitin shell of ticks via enzymatic processes [38]. Soil properties,
including texture and microbial communities, likely shape the tick microbiome, impacting
TBPs in ticks.

The tick microbiome has been shown to contain soil-associated bacteria. Microbiome
diversity has been studied in various hard tick species, such as Ixodes scapularis and Derma-
centor variabilis, using next-generation sequencing techniques [34]. Soil-associated bacteria
often comprise the most diverse component of the tick microbiome [39], primarily influ-
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enced by the tick’s geographic location [40]. However, the specific impact of soil bacteria
composition on the tick microbiome community, including TBPs, remains unknown.

In conclusion, the intricate world of the tick microbiome emerges as a pivotal player in
the complex and nonlinear dynamics between tick abundance and human exposure to TBDs
delineated by Ostfeld and Keesing [5]. As highlighted by recent research, tick microbiome
wields significant influence over the physiology, behavior, and ecology of ticks, acting as
key mediators in the transmission of various TBPs. The interplay between the diverse
microorganisms within ticks, acquired from the environment and influenced by factors
ranging from tick species to geographical locations, presents a dynamic landscape. These
microorganisms can either inhibit or facilitate the transmission of TBDs, introducing a layer
of complexity to the straightforward relationship between reducing tick populations and
decreasing the incidence of TBDs. Understanding the nuanced role of the tick microbiome
in shaping disease ecology is thus paramount, not only in comprehending the nonlinearities
observed, but also for developing more targeted and effective strategies in the realm of
tick control and the prevention of TBDs. Future research endeavors aiming to unravel the
intricate relationships within the tick microbiome hold the promise of providing valuable
insights into the broader dynamics of TBDs and refining our strategies to mitigate their
impact on public health.
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