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Abstract 
Next Generation Sequencing technologies significantly impact the 
field of Antimicrobial Resistance (AMR) detection and monitoring, with 
immediate uses in diagnosis and risk assessment. For this application 
and in general, considerable challenges remain in demonstrating 
sufficient trust to act upon the meaningful information produced from 
raw data, partly because of the reliance on bioinformatics pipelines, 
which can produce different results and therefore lead to different 
interpretations. With the constant evolution of the field, it is difficult to 
identify, harmonise and recommend specific methods for large-scale 
implementations over time. In this article, we propose to address this 
challenge through establishing a transparent, performance-based, 
evaluation approach to provide flexibility in the bioinformatics tools of 
choice, while demonstrating proficiency in meeting common 
performance standards. The approach is two-fold: first, a community-
driven effort to establish and maintain “live” (dynamic) benchmarking 
platforms to provide relevant performance metrics, based on different 
use-cases, that would evolve together with the AMR field; second, 
agreed and defined datasets to allow the pipelines’ implementation, 
validation, and quality-control over time. Following previous 
discussions on the main challenges linked to this approach, we 
provide concrete recommendations and future steps, related to 
different aspects of the design of benchmarks, such as the selection 
and the characteristics of the datasets (quality, choice of pathogens 
and resistances, etc.), the evaluation criteria of the pipelines, and the 
way these resources should be deployed in the community.

Keywords 
Antimicrobial resistance, bioinformatics, next-generation sequencing, 
benchmarking
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1. Introduction
The technological advances in Whole Genome Sequencing 
(WGS) and the increasing integration of Next Generation 
Sequencing (NGS) platforms in the arsenal of testing labora-
tories is having a profound impact on health sciences. Afford-
able human genome sequencing is bringing about an era of 
improved diagnostics and personalised healthcare. For microor-
ganisms, the reliable characterisation of their genetic material 
allows improved insights in their identity and physiology. For  
example, once sequenced, the genome of a microorganism can 
also be used to (re-)identify the species and infer important phe-
notypic properties, such as virulence, resistance to antibiotics, 
typing and other adaptive traits. In addition, novel strategies for 
the implementation and analysis of NGS data are being devel-
oped and improved, and they can be used, for instance, to recon-
struct the timeline and relationships between the cases of an 
infectious disease outbreak, which is something difficult to  
achieve with classical microbiological techniques.

An important aspect of the implementation of NGS technologies  
are considerations related to quality and consistency (see 1),  
in particular if the result of the method is to be used in a  
regulatory context (for example, in a monitoring framework) 
or, more importantly, in a clinical setting linked to decisions on 
medical treatments2–4, veterinary, agricultural or environmental  
interventions and food safety5,6 which may be linked under  
One Health initiatives.

Methods for predicting antimicrobial resistance (AMR) based 
on genetic determinants from NGS data rely on complex  
bioinformatics algorithms and procedures to transform the large 
output produced by the sequencing technologies into relevant 
information. Traditionally, regulatory implementation of ana-
lytical methods focuses on harmonisation of the protocol and the 
subsequent steps of analysis, i.e. ensuring the implementation 
of specific methods previously validated according to a set of  
criteria. For methods with important bioinformatics components,  
this is often not optimal, due to both the large variability in the 
developed strategies, variations in the particular computational 
resources available and the speed at which technologies and ana-
lytical approaches evolve. For the prediction of AMR determi-
nants, very different strategies have been proposed, processing  
the sequencing data either as a set of reads or as pre-processed  
assemblies7,8, even using neural networks9; sometimes,  
the system itself is proprietary and operates as a “black box” 

from the point of view of the user. In such cases like this, it has 
been proposed to approach the quality assurance challenge 
through performance-based evaluations, i.e. ensuring that the 
implemented methods, although different, perform at a similar 
(acceptable) level in this context10. The same performance-based 
evaluation can then be applied whenever a component of the  
pipeline, or its environment, is replaced or updated.

An important component for a performance-based evaluation 
scheme is the availability of resources (in particular, datasets) 
that enable these evaluations11–13. In 2017, the Joint Research 
Centre (JRC) initiated a reflection on the subject by invit-
ing experts in the field of AMR detection with NGS from the  
four compartments of a “One Health” perspective, i.e. clinics, 
food, animals and the environment14,15. These discussions led to 
a compilation of the challenges involved in the development 
of a benchmark strategy for bioinformatics pipelines, both for 
NGS-based approaches in general and in this specific field of 
application16. These challenges were grouped into often over-
lapping categories, including the nature of the samples in the 
dataset (e.g. their origin, quality and associated metadata),  
their composition (e.g. the determinants and species to include), 
their use (e.g. expected results and performance thresholds) 
and their sustainability (e.g. their development, release and  
update).

On the 27th and 28th of May 2019, the JRC held a follow-up 
meeting, including most of the authors of the original arti-
cle and additional experts that expressed interest, to discuss 
and propose solutions to the identified challenges for AMR 
detection using next generation sequencing. The present arti-
cle represents a summary of these discussions and the conclu-
sions reached. We propose this document as a baseline for a 
roadmap and guidelines to harmonise and standardise for the  
generation of the benchmark resources in the field of AMR.

2. Framing the aims and purposes of the 
benchmarking resources
An important observation that arose from the two-day discus-
sions is that the concept of benchmarking, even when focusing 
on a single component of the method (i.e. the bioinformat-
ics pipeline), may refer to different activities that can vary in 
their scope and objectives (see also 17–19). Clarifying these 
scopes is crucial when proposing recommendations, as these 
(and the final datasets) will be influenced by the scope of the  
evaluation.

In the conclusions of Angers et al. article, the use of the bench-
mark resources was reported as follows: “(1) Ensuring confi-
dence in the implementation of the bioinformatics component 
of the procedure, a step currently identified as limiting in the 
field. (2) Allowing evaluation and comparison of new/existing  
bioinformatics strategies, resources and tools. (3) Contributing 
to the validation of specific pipelines and the proficiency testing  
of testing laboratories and (4) “Future-proofing” bioinformat-
ics pipelines to updates and replacement of tools and resources  
used in their different steps.”14.

These four summarising points made above, in practice, cover 
two different questions: 1, 3 and 4 (implementation, validation,  

      Amendments from Version 1
This version contains text additions following the suggestions 
and comments from the reviewers in their referee reports. These 
additions include:
- A revised version of sections: General considerations, Section 3, 
and Conclusions.
- Correction of wrong numbering of sections of the manuscript.
- Update of references and insertion of the suggested ones

Any further responses from the reviewers can be found at 
the end of the article
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proficiency testing and future proofing) ask whether the  
bioinformatics pipeline performs as expected, while 2 (evalu-
ation/comparison) focuses on identifying gold standard pipe-
lines and resources for implementation. The first scope of a 
benchmark resource would thus address the question: “Which  
pipeline performs best and at least by the agreed minimum 
standards?” A second scope addresses the question: “What is 
the quality of the information produced by the implemented  
bioinformatics pipeline?”

The latter question requires further refinement, based on the 
“what” the pipeline is “required” to achieve. Although there 
may be different contexts to the use of the methods (e.g. guide 
clinical intervention, contribute data to a monitoring framework,  
outbreak management, monitor the spread of AMR genes 
(ARGs) in or between different settings/environments, etc.), for  
a benchmark resource, these can be split in three main use cases:

• to predict the resistance of a pathogen of interest based 
on the identification of ARGs (either acquired ARGs  
and/or chromosomal point mutations conferring AMR);

• to identify the link of ARGs to a specific taxon in a 
metagenomic sample (i.e. taxon-binning approaches  
like described by Sangwan et al.20);

• to identify the complete repertoire of the AMR 
determinants (i.e. the resistome) in a complex bacterial 
community from which total genomic DNA has been 
extracted and sequenced (i.e. the metagenome).

Finally, another important scope for a benchmark resource 
was identified, having, once again, an impact on the decisions 
regarding the benchmark dataset: “How robust is the bioin-
formatics pipeline?” Studies addressing this question focus on 

identifying how the pipelines can tolerate variation in charac-
teristics of the input data, most often related to the quality of  
the sample or sequencing steps: robustness against contamina-
tion or low number/poor quality reads, for example. Robustness,  
in certain contexts, could also be seen as the effect (or lack of) 
of swapping a tool (or the reference database) at a certain step 
in the pipeline for a different one that is functionally equivalent  
(see, for example,21).

In summary, it is important to be specific about the purpose 
and scope of the benchmark resource in the decisions taken 
when generating the datasets. We propose that the scope of a  
benchmark has three major parts, summarised in Figure 1.

General considerations
When discussing the different challenges described in 16, 
rarely can an absolute “best” answer be identified for a given 
question; recommendations thus need to be made, taking 
into account the specific purpose of the benchmark resource 
and the fact that they may evolve with the state-of-the-art  
in the field.

Still, some general observations and conclusions were proposed 
regarding difficulties like what type of AMR mechanisms to 
include, which pathogens to consider, lack of expertise and 
of harmonisation, rapid evolution of the fields of informatics 
and bioinformatics in parallel to progress of scientific knowl-
edge on AMR. They are summarised in this section and,  
by discussing two main use cases for benchmarking resources 
(single isolates and mixed samples), represent proposals for  
a way through these and other challenges with common,  
transparent, performance-based evaluation approaches, to be  
applied in different fields in a “One Health” perspective.

Figure 1. Summary of the different “scopes” for the benchmark resources for AMR detection using next generation sequencing 
discussed in the current document, with an indication of the uses for each.
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2.1. NGS platforms
A quick analysis of the different NGS platforms currently 
available and in development makes it obvious that the set of  
reads that they produce have very different characteristics. In 
addition, each platform has its strengths and weaknesses. Both 
the error rate (about 0.1% for Illumina (RRID:SCR_010233), 
1–10% for newer technologies like from Pacific Biosciences 
and Oxford Nanopore Technologies (RRID:SCR_003756)) 
and the types of errors (miscalls, insertions or deletions, or  
problems of particular motifs such as homopolymer sequences) 
vary according to the platform used. The average length of 
the reads can vary from hundreds (Illumina, Ion Torrent) to  
thousands (PacBio, Nanopore) of base pairs22–24.

Bioinformatics pipelines are thus usually designed to handle 
the output of a specific platform, often in a certain configura-
tion. Although exceptions exist (e.g. 25,26), in the context of a 
benchmark resource (and independently of the question asked), 
we thus believe that different datasets are needed for each of 
the different NGS platforms, each containing reads that have 
a profile that matches closely with the normal output of the  
respective technologies. It is important, in this case, to ensure 
that the datasets produced for the different platforms are devel-
oped so that they do not inadvertently introduce any bias 
resulting in apparent difference in performance among the  
different platforms due to composition of the benchmark data-
set (e.g. when bioinformatics pipelines analysing the output  
of different platforms are compared). Although the absence of 
bias may be hard to demonstrate a posteriori, efforts should be 
made to ensure that the datasets derive from strategies that are 
as similar as possible, for example by containing reads generated  
from the same input samples.

The platforms for which benchmark datasets are produced 
should be selected based on pragmatic considerations. Ideally, 

equivalent resources should be available for all technologies; 
however, it may be necessary to prioritize the most common 
platforms if resource limitations are an issue. Recent surveys 
have shown a clear preference for the Illumina platform in this 
context27,28. The same trend can be observed when counting  
the number of published articles in a scientific literature data-
base (Figure 2). That being said, sequencing technologies 
are constantly evolving, and benchmark datasets should be 
extended to new technologies with improved performance as  
these are increasingly adopted by testing laboratories.

The so-called “Third Generation Sequencing” technologies 
that sequence single DNA molecules and, importantly, produce  
long reads, have been shown to provide substantial benefits  
in the context of AMR detection. First, many resistance genes 
are located on plasmids, which are challenging to assemble 
using short-read sequencing technologies, because the short 
read lengths do not allow spanning of repetitive regions29. The 
presence of an AMR determinant on a plasmid is also impor-
tant for its transfer and eventual spread, and thus their correct 
assembly using long-read technologies represent a substantial 
advantage30–34. In addition, the proper and timely treatment of 
a pathogen infection is critical for successful prevention and 
control of diseases in clinical settings as well as in the com-
munity. In line with this, the Nanopore sequencing technology  
has shown the promise of providing accurate antibiotic  
resistance gene identification within six hours of sample acqui-
sition35–37 We thus propose to include DNA Nanopore sequenc-
ing as an additional priority platform to develop benchmark  
resources.

The choice of formats for the different components of the data-
sets is also important. Each instrument produces a raw data  
output in a specific format (for example, the Illumina plat-
forms generate raw data files in binary base call (BCL) format, 

Figure 2. Number of articles published each year in the scientific literature mentioning the selected platform. Source: Scopus, 
using the search: ALL (“X” AND “antimicrobial resistance”).
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while the Nanopore platforms produce FAST5 (HDF5) files). 
However, the entry point of most bioinformatics pipelines in 
this context is the description of the sequence of the produced  
reads, with an indication of the quality (or confidence) score 
for each of the base positions. The FASTQ format is a stand-
ard format in this context38, which should be used in the 
benchmark resources; many tools exist to convert the raw  
data output files into this format in case of different platform 
outputs (see, for example,39,40) although, it should be noted, 
different tools may produce different results and this step  
should be carefully planned.

Other standard formats exist to describe intermediate states of 
processing, for example for the description of assembled con-
tigs or variant calling41. However, using these formats would 
make an a priori assumption about the strategy of the bioin-
formatics pipeline that may not be universal; indeed, not all 
reported solutions involve assembling reads, or mapping them  
to reference genomes or databases (see, for example,42,43).

2.2. Datasets origin
Three main sources of data for creating a benchmark data-
set were identified. The first is to simulate the output (reads) 
in silico using an input sequence of a resistant pathogen and 
a specialised software. The second is to use the archived output  
of previously performed experiments that are available in  
different repositories. The third is to perform NGS experiments  
on biological samples.

Although the disadvantage of simulating in silico data is obvi-
ous (it is not ‘real’), there are some substantial advantages: it 
is a lot cheaper than performing sequencing runs, a lot faster, 
and can be applied to any genome previously sequenced. 
Thus, many more potential scenarios can be tested, for which 
the ground truth is well-established (i.e., the annotation of 
the genome reference that is used: different species, different  
classes of AMR, different localization of AMR), which usually  
cannot be done by actually sequencing them. Finally, it is 
also potentially ‘safer’ to do this for pathogenic bacteria 
for which high biosafety levels would be required to sequence 
in a laboratory. However, a major drawback is that simu-
lating variation the way nature evolves is very challenging 
– genetic variation happens in places in the genome where it  
is hardest to find.

Many methods and programs have been developed to simu-
late genetic data. Their use in this context is, in itself, an exer-
cise of Open Science and mechanisms should be used to 
guarantee quality and reproducibility (see 44) In 2013, Peng  
et al.45 developed the catalogue “Genetic Simulation Resources” 
(GSR, available at https://popmodels.cancercontrol.cancer.
gov/gsr/) to help researchers compare and choose the appropri-
ate simulation tools for their studies. However, after review-
ing the software listed in the GSR catalogue, the authors 
realised that the quality and usefulness of published simula-
tion tools varied greatly due to inaccessible source code, lack  
of or incomplete documentation, difficulties in installation and 
execution, lack of support from authors and lack of program 
maintenance45. For these reasons, a defined checklist of features 

that may benefit end users was defined46; the “GSR Certifica-
tion Program” was developed and recently implemented into the 
GSR in order to assess simulation tools based on these criteria47. 
Established criteria are grouped to attribute four “certificates”  
(https://popmodels.cancercontrol.cancer.gov/gsr/certification/):

• Accessibility: it ensures that the simulator is openly 
available to all interested users and is easy to install  
and use.

• Documentation: it ensures that the simulator is well 
documented so that users can quickly determine if 
the simulator provides needed features and can learn  
how to use it.

• Application: it ensures that the software simulator is 
peer-reviewed, is reasonably user-friendly to be useful 
to peer researchers, and has been used by researchers  
in the scientific community.

• Support: it ensures that the authors of the simulator are 
actively maintaining the simulator, addressing users’ 
questions, bug reports and feature requests.

As of December 2019, the GSR catalogue lists 148 simula-
tors and many of them have been assessed for their compliance 
with the requirements in order to be certified. Obviously, not 
all of them are for simulation of NGS reads. In 2016 Escalona 
et al.48 identified and compared 23 computational tools for the 
simulation of NGS data and established a decision tree for the 
informed selection of an appropriate NGS simulation tool for  
the specific question at hand.

By browsing the GSR catalogue, 20 out of 23 tools assessed by 
Escalona et al. (45) have been recorded, including only one 
with the four “GSR certificates” (Table 1), i.e. the ART tool49. 
Other tools not assessed by Escalona are also present in the  
GSR catalogue with certificates, like NEAT50 and VISOR51.

For choice of the simulation methods and programs for NGS 
reads, the decision tree proposed by Escalona et al. is robust. 
However, it should be complemented by “certification” steps 
and, in this respect, we encourage the use of the “certifica-
tion” criteria established by the GSR Certification Program, to 
tackle the challenge of following agreed principles for rigor-
ous, reproducible, transparent, and systematic benchmarking of  
omics tools, in line with those proposed by Mangul et al.13.

Using pre-existing experiments, from private or public 
repositories, ensures that the components of the dataset are  
representative of a real-life experiment, including the complete 
panel of real-life variabilities that are difficult to simulate. The 
main issues then are: a) there is a need to demonstrate that the 
experiment met the necessary quality criteria (see section 2.3); 
b) the “correct” value (i.e. the ‘ground truth’) for the experi-
ment needs to be determined. This can be already described in 
the metadata associated with the record and/or determined  
(verified) a posteriori – although this requires strict annotation 
of the experiment; c) it will not be possible (besides rare excep-
tions) to build datasets for the different platforms using the  
same initial samples.
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Generating experiments specifically for the sake of a bench-
mark dataset has almost the same advantages and disad-
vantages as using pre-existing data. Additional advantages 
include a better capacity to determine the “ground truth” of  
each sample by ensuring access to the original pathogen, as 
well as the possibility to generate datasets for the different  
platforms while using the same samples, if the same patho-
gen/purified DNA is processed through the different protocols 
and instruments. This also allows better control of the qual-
ity aspects of the procedure performed, e.g. through the use  
of accredited laboratories who have therefore demonstrated 
by audits that they possess the necessary knowhow and  
expertise to create high-quality data. However, an additional 
disadvantage is that this process requires a substantial invest-
ment of time and resources (although this investment may  
be deemed worthwhile given the importance of the topic, 

and could benefit from the involvement of the instrument  
vendors).

Because each approach has advantages and disadvantages, the 
choice must be carefully considered, according to the purpose  
of the dataset, which will be discussed in section 3.

2.3. Quality metrics
The quality of the original sample and the wet laboratory proce-
dures (e.g. DNA extraction, library preparation and sequencing)  
have a strong impact on the quality of the reads fed into the  
bioinformatics pipelines. Contamination, low amounts of reads 
passing the machine QC, higher error rates than normal, etc. 
can influence the output of bioinformatics pipelines. Usually,  
the pipelines are designed to be resilient to some extent to  
these variations.

Table 1. Analysis of the GSR certifications of the computational tools for the simulation of 
next-generation sequencing described in 48. See text for details.

Tool In GSR? GSR certificate?

Accessibility Documentation Application Support

454sim Yes not yet evaluated

ART Yes Yes Yes Yes Yes

ArtificialFastqGenerator Yes not yet evaluated

BEAR No -

CuReSim Yes No Yes No No

DWGSIM Yes Yes Yes No Yes

EAGLE Yes not yet evaluated

FASTQSim Yes not yet evaluated

Flowsim No -

GemSIM Yes Yes Yes No No

Grinder Yes not yet evaluated

Mason Yes Yes Yes No Yes

MetaSim Yes No Yes Yes No

NeSSM No -

pbsim Yes not yet evaluated

pIRS Yes Yes Yes No Yes

ReadSim Yes not yet evaluated

simhtsd Yes not yet evaluated

simNGS Yes not yet evaluated

SimSeq Yes not yet evaluated

SInC Yes Yes No No Yes

wgsim Yes not yet evaluated

XS Yes not yet evaluated
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Although understanding this resilience is important, we pro-
pose, as shown in Figure 1, to separate these considerations 
from resources meant for quality control and performance 
evaluation (questions 1, 2a and 2b) for two reasons: first, many  
of these factors are variable, heterogeneous, technology- 
specific, and can be implemented at different stages of the  
bioinformatics pipeline; attempting to incorporate them all in 
the same resource would be impractical and too costly. Second,  
pipelines implemented for regulatory or clinical decision-making  
will be incorporated into a larger quality assurance frame-
work that will ensure the quality of the input until that step2. 
Although examples exist of end-to-end NGS workflow vali-
dation (like in the case of WGS) where bioinformatics is one  
of the components52, our approach emphasises a process where  
each step is validated separately (see 53).

It is then crucial to closely follow the proposed quality control  
schemes, either published or in development, in particular 
for the upstream steps (DNA isolation, library extraction, 
sequencing, etc.), for example ISO/TC 34/SC 9/WG 25. From 
these, both the metrics and the thresholds that can be applied at 
the level of the reads should be identified (some of which may 
vary according to the sequencing methodology), such as percent  
of bases with quality scores over Q30, percent alignment  
and error rates of the positive control (if present), the number 
of reads after trimming, quality of the draft assembly (e.g. N50, 
number of contigs), etc. Tools exist that can provide a panel of 
quality metrics from FASTQ files, such as FASTQC (RRID:
SCR_014583)54. It is important to include the quality metrics  
as metadata in the dataset samples.

For studies evaluating resilience (question 3), a variety of data-
sets are needed for the “low quality dimensions” to be tested. 
For example, datasets incorporating high error rates, contami-
nating reads, reads with lower Q-scores could be used to assess 
resilience of pipelines to quality issues that may or may not 
be detectable with standard QC pipelines. For this reason, the 
establishment of standard datasets for this type of benchmark-
ing is a complex exercise and answering question 3 of Figure 1  
should be attempted on a case-by-case basis, and may be better 
suited to individual studies. One way to harmonise the approach 
would be to use the datasets produced for questions 1 and 2 
as a starting point, as there are tools that can add some extent  
of “noise” to existing good quality datasets49.

2.4. Choice of bacteria/resistance to include
In the context of challenging/evaluating a bioinformatics pipe-
line for the detection of AMR genetic determinants, a very 
pragmatic approach could be the generation of random DNA 
sequences, to which particular sequences of interest are added 
(i.e. fragments of AMR genes). However, the genomic back-
ground of the bacteria (i.e. the “non-AMR related” sequences) 
might have a profound influence on the performance of the  
pipelines. For example, pipelines that include a contig assembly  
step will be affected by the frequency and level of repeti-
tive sequences in the background genome, as well as its GC 
content55,56. Some species also have genes that are similar at 
the sequence level to known AMR determinants that efficient  
pipelines must be able to distinguish.

In conclusion, the bacterial species included in the bench-
mark datasets, and the AMR genes they contain, need thus to 
be carefully selected, with the appropriate justifications. These 
are specific to the purpose of the dataset (Figure 1) and will be  
discussed in section 3.1–section 3.3 below.

2.5. Genomic and phenotypic endpoints
A pipeline processing sequencing information for AMR can 
produce two closely linked but conceptually different out-
puts: a) they can detect the genetic determinants of AMR 
(genomic endpoint), and in addition b) some can predict the  
AMR/susceptibility of the bacteria in the original sample  
(phenotypic endpoint).

In a clinical context, the phenotypic endpoint is the most  
relevant, as it provides the information that is most useful for the 
end users. Studies that evaluated AMR genotype to phenotype  
relationships have indicated that despite generally high cor-
respondence, this can vary greatly between pathogens / case 
studies, and even for different antimicrobial agents within the 
same species57,58. There are different reasons for discrepancies 
between phenotype and genotype, including the extent of the 
expression of the resistance determinants for the resistance to be  
conferred, and also relatively complex molecular pathways that 
can influence the eventual phenotype. In some cases, genes can 
also confer reduced susceptibility (i.e. increasing the concen-
tration of an antimicrobial necessary for treatment) rather than 
resistance per se. A genotypic endpoint may also be problem-
atic due to the definition of “antibiotic resistance” in different  
settings59, which can complicate the interpretation of results.

In practice, however, focusing on a genomic endpoint has many 
advantages:

• The end-point (determinant; gene or SNP) is better 
defined: presence or absence.

• The gene copy number can be calculated, this is 
important even if obtaining gene copy numbers with  
short read data remains pretty difficult.

• It provides high resolution information that is useful 
when many genetic determinants confer resistance to  
the same antimicrobials.

• It offers additional information to contribute to an 
evaluation of the history of the spread of AMR60.

• It does not rely on breakpoints such as MICs, which may 
vary between human and animal bacterial isolates, or 
may not be available for some animals (or pathogens), 
or because it may be updated based on phenotypic  
scientific observations61,62.

• Even in the cases of AMR determinants not being 
expressed (thus not leading to a resistance phenotype), 
this may be important to characterise/record for 
epidemiological purposes.

2.6. Benchmark datasets metadata
Besides the set of reads themselves, additional information 
needs to be associated with each sample in the dataset, not for 
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the benchmarking per se but its use for next benchmarking  
exercises.

Obviously, each sample needs to include a “true” value, i.e. the 
‘ground truth’ to be used for comparison when evaluating the  
performance of the pipeline. For a genotypic endpoint, this 
would take the form of the name (with a reference to a data-
base) of the AMR determinants present. If real-life samples are 
used, the phenotypic information should be included, on top  
of the genotypic endpoint.

Public resources and repositories are available to host both the 
data and the metadata, and should be used as appropriate for 
the sake of transparency, obsolescence and traceability of the  
datasets of the benchmark resource. In practice, this means:

• The NGS reads data should be hosted in one of 
the International Nucleotide Sequence Database 
Collaboration (INSDC, RRID:SCR_011967) sequence 
reads archives63, compiling the metadata information  
as appropriate.

• For simulated reads, this information should include  
the simulation tool used (source, version, parameters).

• For simulated reads, the “input” sequence(s) should 
be a closed genome, and any additional genes, that 
should be available in INSDC sequence archives64, 
and the record ID(s) included in the reads metadata 
information. Optimally, the closed genomes should 
be linked to a “real” sample in the INSDC BioSample  
database.

• For real experiments, the originally sequenced sample 
should be present/submitted in the INSDC BioSample 
database65, with all the appropriate metadata information 
(including identified resistances and the MIC(s) 
determined according to the standard culture-based 
evaluation methods).

3. Design of the scope-specific benchmark 
resources
Two main use cases for benchmarking resources have been dis-
cussed, i.e. single isolates and mixed samples, here summarised  
in sections 3.1-3.2 and 3.3, respectively.

3.1. Is the bioinformatics pipeline performing according 
to (agreed) minimum standards?
The scope of this benchmark resource is to address the ques-
tions of validation, implementation and quality control over 
time (i.e. following any change in the pipeline or the environ-
ment on which it is executed). The dataset required for this 
should be compiled based on an agreed “minimum” standard, 
i.e. thresholds for the acceptance values of certain performance  
metrics for the bioinformatics pipeline in the context of the 
detection of AMR determinants, no matter the exact final use  
of the information produced.

This evaluation of performance should be based on challeng-
ing the pipeline with input representing a carefully selected set 
of resistance determinants and bacterial hosts. These sets of 

NGS reads should be fully characterised regarding their genetic 
content and serve as (in silico) reference materials for the vali-
dation and quality control of the bioinformatics component  
of the methods (see, for other host models, 66,67).

To maintain this necessary control on the genetic content of 
the reads, the dataset could be composed exclusively of simu-
lated experiments. Synthetic artificial reads can be generated 
on a large scale in a harmonised manner and most importantly 
allow full control on the content. Alternatively, real sequenc-
ing datasets could be used, which would be extremely relevant  
for cases where the presence/absence of some AMR determi-
nants has been established using consolidated classical molecu-
lar-biology-based methods and/or first generation-sequenc-
ing (e.g. PCR and/or Sanger sequencing). Both approaches 
enable the generation of datasets for which the ‘ground truth’ is  
well-established.

For the choice of resistances and bacterial species to be 
included, it is proposed to select them based on three sources, 
based on their current public health relevance and regulatory  
frameworks:

• The WHO’s list of antibiotic-resistant "priority 
pathogens"68.

• The AMR reporting protocol for the European 
Antimicrobial Resistance Surveillance Network  
(EARS-Net)69.

• The Commission Implementing Decision of 12  
November 2013 on the monitoring and reporting of  
AMR in zoonotic and commensal bacteria70.

Table 2 shows the combination of these three lists, in terms of  
both the bacterial species and the antibiotics mentioned.

It is important to highlight that the combination of these three 
lists still leaves important regulatory gaps, and should be  
complemented by the World Organisation for Animal Health 
(OIE, RRID:SCR_012759) list of antimicrobial agents of veteri-
nary importance71 or others72. However, the lists do not mention  
specific species associated to each antibiotic, and these should 
be selected by the appropriate experts for the context of this 
benchmark resource. In practice, the generation of reference  
sequencing datasets should focus on:

1.  Pathogens in Table 2 for which high-quality and complete 
reference genome sequences are available. See, for 
example, the FDA-ARGOS database11 and the NCBI 
RefSeq Genomes database (RRID:SCR_003496).

2.  Known genetic determinants for the resistance against 
the antibiotics in Table 2, using available resources7,8,73. 
If more than one determinant is associated with a 
resistance phenotype, one possibility is to collect them 
all; expert knowledge and empirical evidence on the 
relative contribution of different genes to the phenotypes, 
from published large-scale studies (e.g. 74) can also 
be used to objectively reduce the list of determinants  
to include for a given antibiotic.
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Table 2. Summary of the bacterial species and antibiotics resistances mentioned in the three lists 
discussed in the text. a: WHO’s list of antibiotic-resistant “priority pathogens”. b: EARS-Net reporting protocol for 
2018. c: Commission Implementing Decision 2013/652/EU.
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Amikacin b b b b

Amoxicillin b b b b

Ampicillin b,c b,c b,c a c

Azithromycin c c b

Cefepime b b b

Cefotaxime b,c b c b

Cefoxitin b

Ceftazidime b,c b b c

Ceftriaxone b b b

Cephalosporin a

Chloramphenicol c c c c

Ciprofloxacin b a,c a,c c c b,c b a b a,c a b

Clarithromycin a b

Cloxacillin b

Colistin b b,c b b c

Daptomycin c c c

Dicloxacillin b

Ertapenem a a,b a,b a a a

Erythromycin c c c c b

Flucloxacillin b

Gentamicin b c c b,c b,c b,c b b c

Imipenem a,b a,b a,b a,b a a

Levofloxacin b a a b b a b a a b b

Linezolid b,c b,c b

Meropenem a,b a,b,c a,b a,b a,c a

Methicillin a,b

Moxifloxacin b b b

Nalidixic acid c c c c
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Netilmicin b b b b

Norfloxacin b b b b

Ofloxacin a a b b a a a b

Oxacillin b b

Penicillin a,b

Piperacillin b b b

Polymyxin B b b b b

Quinupristin/ 
Dalfopristin

c c

Rifampin b

Streptomycin c c

Sulfamethoxazole c c

Teicoplanin b,c b,c

Tetracycline c c c c c c

Tigecycline c c b,c b c

Tobramycin b b b b

Trimethoprim c c

Vancomycin b,c a,b,c a,b

3.  Combinations of (1) and (2) present in at least one  
of the chosen lists (see cells in Table 2) (see section 2.3).

The availability of reference datasets for which the ground truth 
is known, i.e. the composition of AMR determinants within the 
sample (whether SNPs, genes, or more complex features) is 
well-established, allows to compare the output of bioinformat-
ics pipelines to evaluate their performance. The endpoint con-
sidered for this benchmark is thus genotypic (see section 2.5),  
i.e. the proper detection and identification of genomic AMR 
determinants is evaluated. The reference datasets for each  
pathogen should be carefully chosen and characterised to  
ensure all present AMR determinants are carefully recorded.

Several classical performance metrics used traditionally for 
method performance evaluation can then be used to describe  

performance of the pipeline, such as sensitivity, specificity, 
accuracy, precision, repeatability, and reproducibility2. Because 
of the selection of this subset of bacteria/resistances and their 
immediate clinical and regulatory importance, an important 
performance metric to be evaluated is accuracy, i.e. the like-
lihood that results are correct. Definitions for accuracy and  
other performance metrics should be carefully considered and 
tailored to the genomics context53 (for example, “reproduc-
ibility”, could be evaluated as the result of running the same 
bioinformatics pipeline, with the same datasets, implemented in  
different systems).

For all performance metrics, the minimum acceptable values 
should be subsequently determined once the outputs of real 
benchmarking exercises considering all the aspects described 
in this article are available. This will allow to enforce thresholds  
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that pipelines should obtain. Such an approach focusing on 
performance-based evaluation offers a robust framework 
for pipeline validation that is more flexible than focusing all  
efforts on single pipelines or sequencing technologies. Scientists  
should be able to choose the pipeline best suited to their own 
needs, whether commercial, open-source, web-based, etc.75, 
as long as it conforms to minimum agreed upon perform-
ance standards, evaluated by analyzing the community AMR 
benchmark datasets that are created. This also offers flex-
ibility with respect to the currently quickly evolving sequenc-
ing technologies for which it is not always clear yet which  
algorithmic approaches will become community standards, 
allowing different data analysis methodologies if minimum  
performance is demonstrated.

When generated, the benchmark should be deployed on a dedi-
cated (and sustainably maintained) platform that includes all 
the links to the data (see section 2.6) and a description of all 
the steps/decisions that were taken to generate it. It is also 
important to implement, from the start, a clear version control  
system for the benchmark resource, in order to properly docu-
ment the changes over time, and the exact versions used at  
the different times that the resource is used. In addition to the 
unique accession numbers of the individual samples in their 
respective repositories, the dataset as a whole should have a 
unique identifier (e.g. a DOI) that changes when any modi-
fication is made. The versioning should also allow access to 
and use of any previous versions of the resource, even after  
being updated.

This minimal dataset contains, by definition, a limited number 
of species and may lack pathogens of clinical importance (for 
example, Mycobacterium tuberculosis, for which WGS-based 
approaches have shown particular advantages, see 76,77). A 
full validation exercise for a specific pipeline, applied to a spe-
cific context, will need additional samples that complement the  
resource described in this section with the appropriate species/ 
resistances. These datasets may, for example, be taken from 
the resources described in the following sections, that focus 
on evaluating the actual performance of methods in broader  
contexts by gathering the many datasets necessary to do so.

3.2. What is the quality of the information produced by 
the bioinformatics pipeline (prediction of resistance)?
The scope of this benchmark resource is to identify gold stand-
ards for bioinformatics pipelines, in this case linked to the  
specific use of predicting resistance/susceptibility of a pathogen.

There is a step between identifying the determinants of AMR 
and predicting resistance, which is not always straightforward 
as factors such as expression of the AMR gene may affect 
the prediction57,74. For this reason, and because it is concep-
tually closer to the information that is acted upon, the end-
point for this benchmark should be phenotypic. In addition, the  
dataset should be composed of real NGS experiments, since 
artefacts and variations are more complex in real sequencing 
reads than in simulated reads, a factor crucial to consider for  
this scope that focuses on accuracy.

To minimise the need of extensive resources to produce these 
“real” datasets, we propose to focus on re-using experiments 
previously performed under standardised conditions. A great 
source of data are the published ring trials; these have the  
additional advantage of providing an accurate characterisation 
of the sequenced samples, since the same original samples are 
sequenced many times by different laboratories. If needed, the  
data generated by single-site studies can also be evaluated, 
although in this case the issue of the correct characterisa-
tion of the samples (their “true” resistance patterns) should 
be addressed. One possibility is to use studies performed in a  
hospital setting, linked to clinical outcome (for example,78), or 
where sufficient information is available to evaluate the way  
the susceptibility testing was performed.

In practice, this would mean:

1.  Performing an extensive review of the published 
literature to identify studies, ring trials, and proficiency 
testing that meet the criteria (focused on the detection  
of AMR using NGS, starting from a “real” sample). 
Table 3 provides a non-exhaustive list of recent 
references to be used as a starting point, together with 
reports from national and international reference 
laboratories dealing with AMR (see for example, the  
external quality assessment reports from the EU  
Reference Laboratory – Antimicrobial Resistance).

2.  Assessing whether the raw sequencing output for 
the projects meet the FAIR principles (Findability, 
Accessibility, Interoperability, and Reusability)79, and 
are retrievable from publicly available repositories 
– even if they are access controlled. If not fully 
open, the corresponding authors should be contacted 
and asked whether the data could be obtained and 
deposited in long-term archives (e.g. Zenodo (RRID:
SCR_004129), EuDat and/or the European Nucleotide  
Archive (ENA, RRID:SCR_006515) depending on the 
deposited data).

These datasets would then be used to test and compare the dif-
ferent bioinformatics pipelines in order to calculate the accu-
racy of their phenotypic predictions. Although not exhaustive, 
these datasets should cover the most relevant “real-life” cases, 
as they warranted their inclusion into a ring trial, with the asso-
ciated resources committed to produce the data. The final size 
and composition (species, resistances) of the dataset would  
depend on what is provided by the available projects; ad hoc 
ring trials could be organised to cover eventual important gaps  
in species and/or resistance.

Although the chosen endpoint is mostly phenotypic, the pur-
pose is to evaluate bioinformatics pipelines that process infor-
mation at the sequence level, so it was agreed that there was 
little added value of inserting resistant samples (based on 
a characterised or inferred phenotype) for which the resist-
ance mechanism is still unknown. In any case, it is improb-
able that these cases would have been included in ring trials  
projects.
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Although the performance metrics described in Section 3.1 
apply and are relevant in this case, the main performance  
metric for this benchmark is the accuracy. Because of the  
difficulty of predicting the link between the presence of  
AMR determinants and their impact on the pathogen sus-
ceptibility to the antimicrobial agents, the target accuracy 
is expected to be lower than for a genotypic endpoint. Both  

false positives and false negatives can be an issue when 
the information is used for clinical intervention, so a suf-
ficient amount of “borderline” cases should be included, 
and both sensitivity and specificity evaluated. It is also pos-
sible to consider attaching different relative costs for false  
positives and false negatives when evaluating the accuracy  
metrics.

Table 3. Non-exhaustive list  of sample studies to be analysed for the availability of FAIR raw reads data, to 
include in the benchmark resource.

Pathogens Study Year Study type Ref

Clostridium (Clostridioides) difficile Berger et al. 2019 ring trial 80

Neisseria meningitidis Bogaerts et al. 2019 validation study 53

Salmonella enterica Mensah et al. 2019 single study 81

Enterobacteriales Ruppé et al. 2019 single study 58

Escherichia coli Stubberfield et al. 2019 single study 82

Staphylococcus aureus Deplano et al. 2018 ring trial 83

Brucella melitensis Johansen et al. 2018 ring trial 84

Salmonella enterica Neuert et al. 2018 single study 85

Salmonella, Campylobacter Pedersen et al. 2018 proficiency 
testing

86

Escherichia coli Pietsch et al. 2018 single study 87

Enterococcus faecium, Enterococcus faecalis Tyson et al. 2018 single study 88

Actinobacillus pleuropneumoniae Bossé et al. 2017 single study 89

Klebsiella pneumoniae Brhelova et al. 2017 single study 90

Salmonella enterica Carroll et al. 2017 single study 91

Escherichia coli Day and al. 2016 single study 92

Salmonella spp., Escherichia coli, Staphylococcus aureus Hendriksen et al. 2016 proficiency 
testing

93

Salmonella McDermott et al. 2016 single study 94

Staphylococcus aureus, Enterococcus faecium, Escherichia coli, 
Pseudomonas aeruginosa

Mellmann et al. 2016 single study 78

Staphylococcus aureus, Mycobacterium tuberculosis Bradley et al. 2015 single study 42

Escherichia coli Tyson et al. 2015 single study 95

Mycobacterium tuberculosis Walker et al. 2015 single study 76

Campylobacter jejuni, Campylobacter coli Zhao et al. 2015 single study 96

Pseudomonas aeruginosa Koos et al. 2014 single study 97

Staphylococcus aureus Gordon et al. 2013 single study 98

Escherichia coli, Klebsiella pneumoniae Stoesser et al. 2013 single study 99

Staphylococcus aureus, Clostridium difficile Eyre et al. 2012 single study 100

Salmonella typhimurium, Escherichia coli, Enterococcus faecalis, 
Enterococcus faecium 

Zankari et al. 2012 single study 101

Salmonella Cooper et al. 2020 single study 102
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Once selected and combined, the data should be separated by 
NGS platform, and by species and antibiotic. Because this 
benchmarking aims at evaluating and comparing performance 
of methods, which are continuously developed and optimised, 
against a large and constantly expanding dataset, it is crucial to 
define an environment where the AMR community can establish 
a continuous benchmarking effort. Within this platform, pipe-
lines would be compared simultaneously based on up-to-date  
datasets, under the same conditions, and over time. Constantly 
updating and adding to the reference datasets is important 
both to keep up with the evolution of the knowledge/reality in 
the field, and to avoid that pipelines are developed that are  
optimised to specific datasets only.

One option is OpenEBench (Open ELIXIR Benchmarking and 
Technical Monitoring platform), which is developed under the 
ELIXIR-EXCELERATE umbrella in order to provide such a 
platform18. In this framework, in addition to compiling the data 
resources to be included (as described above), and whatever  
the platform chosen, there will be the need for efforts to:

• Establish guidelines for input and output formats (and, in 
the case of the phenotypic endpoint, an agreed ontology 
for the conclusions).

• Encouraging a “FAIR” implementation of the pipelines 
themselves, to increase the number of pipelines 
accessible for the benchmarking platform, and for  
interested end users to retrieve and implement in house.

Provisions should be included to allow the possibility to evalu-
ate, in this context, pipelines that cannot be made “FAIR” based 
on intellectual property rights, institutional policies or available  
resources.

A final step will be to communicate these efforts within the  
scientific community and the potential end users, as well as to 
demonstrate the added value of this “live” benchmark resource 
to ensure that future studies (in particular, their pipelines and 
the datasets they generate) are efficiently integrated in the  
platform.

3.3. What is the quality of the information produced by 
the bioinformatics pipeline (mixed samples)?
Many gaps exist in the scientific understanding of antibiotic 
resistance development and transmission, making it difficult to 
properly advise policy makers on how to manage this risk. There 
is strong evidence that a multitude of resistance genes in the 
environment have not yet made it into pathogens103,104; under-
standing the relative importance of different transmission and  
exposure routes for bacteria is thus crucial59,105–107.

Establishing a baseline for resistance determinants in the envi-
ronment, and linking this to a surveillance scheme, requires 
a good understanding of the relative performance of methods  
that are and have been developed to characterise the resistome  
in a complex sample. There would be, also for this use case, 
a great value in the establishment of a community-driven 
“live” benchmarking using a platform such as OpenEBench,  

and many of the concepts that were discussed in section 3.2  
apply here as well, with the following differences:

• As, by definition, the resistome refers to the genetic 
determinants (and not directly the associated 
phenotypes)108,109, the endpoint for this benchmark  
should be genotypic.

• Culture-dependent methods established for clinical 
samples cannot always be readily applied to 
environmental samples110, so establishing “true” values 
for real samples, to compare the output of the evaluated 
pipelines, will be difficult, so the benchmark should  
be performed, at this stage, with simulated reads.

The resistome is usually derived from a sample containing a  
complex microbial community (see 111–113 for recent exam-
ples). For this reason, the approaches114 and tools115 from the 
ongoing Critical Assessment of Metagenome Interpretation 
(CAMI) could be considered when organising the community  
around this challenge.

In practice, this means an effort to engage and coordinate the  
community of bioinformatics pipelines designed to predict the 
resistome of a sample in order to:

1.  Design the scope of the challenge, including the  
relevant metrics for performance evaluation. For this, 
“accuracy”, the main metrics for the previous two 
benchmarks, may not be the most appropriate, and the 
focus should be placed, e.g., on “recall” and “precision”.

2.  Describe the microbial communities (i.e. microbial 
abundance profiles and their typical AMR gene profiles) 
most relevant for the determination/monitoring of the 
resistome, in order to generate congruent datasets that 
accurately represent real-life samples. Of particular 
interest, for which validation will eventually be a 
prerequisite, are blood, serum, saliva etc., i.e. the types 
of samples clinical microbiology laboratories and  
national reference centres/laboratories typically process.

3.  Identify both the microbial genomes and the resistance 
determinants (as single genetic determinants or 
plasmids) necessary to generate the profiles identified 
in (2). As stated in section 3.1, the genomes should 
be well analysed to ensure no lack of, or an adequate 
characterisation of, AMR determinants. This is crucial 
in order to establish a resistome “ground truth” for the  
generated datasets.

4.  Combine these sequences, as appropriate, to generate 
the benchmark datasets, using appropriate tools 
(such as CAMISIM, developed as part of the CAMI  
challenge115).

The community should decide whether (or at what stage) 
the use of real data can also be considered in the challenge. 
As for purified bacteria (see Table 3), many studies have 
been published as potential sources of raw data. These stud-
ies can also be used as a source of information to define the rel-
evant profiles (point 2 above). Recent studies include resistome  
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determination in samples from drinking water116,117, waste-
water plants118,119, hospital wastewater120,121, human gut111,122, 
sewage123, to name a few. In the benchmarking platform, the 
datasets (and the calculated pipeline performances) should 
be separated by the type of source they originate from or simu-
late. Another important point for this scope is the detection 
of minority populations and the correct normalisation of the  
samples to be analysed124.

Conclusions
The scientific community quickly adopted the new NGS tech-
nologies to develop methods that can efficiently detect, iden-
tify and characterise genetic determinants of AMR. In parallel 
with these research uses, NGS technologies can have immedi-
ate impacts on how AMR is diagnosed, detected and reported 
worldwide, complementing etiologic agent diagnosis, clinical 
decision making, risk assessment and established monitoring  
frameworks3,125–127.

For this application and in general, there are great challenges 
in the implementation of NGS-based methods for public deci-
sion-making. Capacity building and its cost is of course a  
factor, but recent surveys show that capacity development is 
ongoing in many countries28. A greater concern is the interpre-
tation of the produced genomic data into meaningful informa-
tion that can be acted upon or used for regulatory monitoring, in 
great part because of the important bioinformatics component  
of these methods.

The difficulties posed by this reliance on bioinformatics  
processes are many, and include:

• The specific expertise needed for their implementation 
and maintenance, which is still limited compared to  
the needs of routine testing environments.

• The lack of harmonisation in their design, as the same 
sequencer output can be processed to produce the 
same target information by pipelines that either follow 
the same general strategy, with different tools for the 
individual steps, or completely different strategies  
entirely (see 128).

• The constant, rapid evolution of the fields of informatics 
and bioinformatics, which makes uneasy (or even  
unwise) to “freeze” a harmonised, validated, implemented 
pipeline with the same components in the same  
environment over long periods of time.

• For AMR, as for other fields, the pipelines (and their 
performance metrics) are built based on a priori 
scientific knowledge, in this case the genetics of  
resistance, which is constantly progressing.

In this document, we propose a way through these difficul-
ties with a transparent, performance-based evaluation approach 
to assess and demonstrate that pipelines are fit-for-purpose and 
to ensure quality control. The discussions, initiated in 201716, 
have involved experts in different fields: human health, ani-
mal health, food and environmental monitoring, and general  
bioinformatics.

The approach is two-fold: first, an agreed-upon, limited dataset 
to contribute to performance-based control of the pipeline  
implementation and their integration in quality systems. We pro-
pose selection criteria for this common dataset based on bac-
terial species and resistances relevant to current public health  
priorities (see section 3.1).

Second, a community-driven effort to establish a “live” bench-
marking platform where both the datasets and the bioinfor-
matics workflows are available to the community according to 
the FAIR principles. After an initial investment of resources 
to establish the rules and integrate the existing resources, a 
proper engagement of the community will be needed to ensure  
that both the datasets and the workflows will constantly be 
updated, with live monitoring of the resulting comparative  
performance parameters. For this, two main use cases were 
identified, each necessitating its own platform: the analysis  
of isolates (with a focus on the prediction of resistance, see  
section 3.2), and the analysis of mixed samples (with a focus  
on the interpretation of the resistome, see section 3.3).

To ensure acceptance of this approach by regulators and  
policy-makers, the conclusions and the roadmap proposed in 
this document should be complemented (and, if necessary, 
revised) with the continuous involvement of all relevant actors 
in the field, including (but not limited to) the scientific commu-
nity (see 13 and 114 as excellent examples of defining principles 
for benchmarking, and a roadmap for software selection, 
respectively, to guide researchers), the collaborative organisa-
tion and platforms active in the field (e.g. the European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST), 
the Joint Programming Initiative on Antimicrobial Resistance  
(JPIAMR), the Global Microbial Identifier (GMI), the European  
Society of Clinical Microbiology and Infectious Diseases 
and its Study Groups (ESCMID)), regulatory agencies (e.g.  
the European Food Safety Authority (EFSA, RRID:SCR_
000963), the European Centre for Disease Prevention and 
Control (ECDC)), European Union reference laboratories and 
their networks (e.g. the EURL AR and the EURLs for the dif-
ferent pathogens) and the existing bioinformatics infrastruc-
tures (e.g. the European Bioinformatics Institute (EMBL/EBI),  
ELIXIR).

Such an approach would be a way to facilitate the integra-
tion of NGS-based methods in the field of AMR, and may be a 
case study on how to approach the overlapping challenges in 
other potential fields of applications, including some at high 
level in policy agendas (food fraud, genetically modified organ-
ism detection, biothreats monitoring for biodefense purposes,  
etc.).

Disclaimer
The contents of this article are the views of the authors and  
do not necessarily represent an official position of the European  
Commission or the U.S. Food and Drug Administration.

Data availability
No data is associated with this article.

Page 16 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024



Acknowledgments
We would like to thank Valentina Rizzi (EFSA) and Alberto 
Orgiazzi (JRC) for their participation to the workshop discus-
sions. The authors are also grateful to the following colleagues 

for their comments on the manuscript: Sigrid De Keersmaecker  
and Nancy Roosens (Sciensano) and Tewodros Debebe 
(Biomes). We are also grateful to Laura Oliva for her invaluable  
help during the workshop.

References

1.  Doyle RM, O'Sullivan DM, Aller SD, et al.: Discordant bioinformatic predictions 
of antimicrobial resistance from whole-genome sequencing data of 
bacterial isolates: an inter-laboratory study. Microb Genom. 2020; 6(2): 
e000335.  
PubMed Abstract | Publisher Full Text | Free Full Text 

2.  Kozyreva VK, Truong CL, Greninger AL, et al.: Validation and Implementation 
of Clinical Laboratory Improvements Act-Compliant Whole-Genome 
Sequencing in the Public Health Microbiology Laboratory. J Clin Microbiol. 
2017; 55(8): 2502–2520.  
PubMed Abstract | Publisher Full Text | Free Full Text 

3.  Ellington MJ, Ekelund O, Aarestrup FM, et al.: The role of whole genome 
sequencing in antimicrobial susceptibility testing of bacteria: report from 
the EUCAST Subcommittee. Clin Microbiol Infect. 2017; 23(1): 2–22.  
PubMed Abstract | Publisher Full Text 

4.  Rossen JWA, Friedrich AW, Moran-Gilad J, et al.: Practical issues in 
implementing whole-genome-sequencing in routine diagnostic 
microbiology. Clin Microbiol Infect. 2018; 24(4): 355–360.  
PubMed Abstract | Publisher Full Text 

5.  Collineau L, Boerlin P, Carson CA, et al.: Integrating Whole-Genome 
Sequencing Data Into Quantitative Risk Assessment of Foodborne 
Antimicrobial Resistance: A Review of Opportunities and Challenges. Front 
Microbiol. 2019; 10: 1107.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6.  EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel), Koutsoumanis 
K, Allende A, et al.: Whole genome sequencing and metagenomics for 
outbreak investigation, source attribution and risk assessment of food-
borne microorganisms. EFSA J. 2019; 17(12): e05898.  
PubMed Abstract | Publisher Full Text | Free Full Text 

7.  Hendriksen RS, Bortolaia V, Tate H, et al.: Using Genomics to Track Global 
Antimicrobial Resistance. Front Public Health. 2019; 7: 242.  
PubMed Abstract | Publisher Full Text | Free Full Text 

8.  Boolchandani M, D’Souza AW, Dantas G: Sequencing-based methods and 
resources to study antimicrobial resistance. Nat Rev Genet. 2019; 20(6): 
356–370.  
PubMed Abstract | Publisher Full Text | Free Full Text 

9.  Aytan-Aktug D, Clausen PTLC, Bortolaia V, et al.: Prediction of Acquired 
Antimicrobial Resistance for Multiple Bacterial Species Using Neural 
Networks. mSystems. 2020; 5(1): e00774–19.  
PubMed Abstract | Publisher Full Text | Free Full Text 

10.  Lambert D, Pightling A, Griffiths E, et al.: Baseline Practices for the 
Application of Genomic Data Supporting Regulatory Food Safety. J AOAC Int. 
2017; 100(3): 721–731.  
PubMed Abstract | Publisher Full Text 

11.  Sichtig H, Minogue T, Yan Y, et al.: FDA-ARGOS is a database with public 
quality-controlled reference genomes for diagnostic use and regulatory 
science. Nat Commun. 2019; 10(1): 3313.  
PubMed Abstract | Publisher Full Text | Free Full Text 

12.  Hardwick SA, Deveson IW, Mercer TR: Reference standards for next-
generation sequencing. Nat Rev Genet. 2017; 18(8): 473–484.  
PubMed Abstract | Publisher Full Text 

13.  Mangul S, Martin LS, Hill BL, et al.: Systematic benchmarking of omics 
computational tools. Nat Commun. 2019; 10(1): 1393.  
PubMed Abstract | Publisher Full Text | Free Full Text 

14.  Angers A, Petrillo M, Patak A, et al.: The role and implementation of next-
generation sequencing technologies in the coordinated action plan 
against antimicrobial resistance. Publications Office of the European Union. 
2017.  
Publisher Full Text 

15.  Hernando-Amado S, Coque TM, Baquero F, et al.: Defining and combating 
antibiotic resistance from One Health and Global Health perspectives. Nat 
Microbiol. 2019; 4(9): 1432–1442.  
PubMed Abstract | Publisher Full Text 

16.  Angers-Loustau A, Petrillo M, Bengtsson-Palme J, et al.: The challenges of 
designing a benchmark strategy for bioinformatics pipelines in the 
identification of antimicrobial resistance determinants using next 
generation sequencing technologies. [version 2; peer review: 2 approved]. 
F1000Res. 2018; 7: ISCB Comm J–459.  
PubMed Abstract | Publisher Full Text | Free Full Text 

17.  Weber LM, Saelens W, Cannoodt R, et al.: Essential guidelines for 

computational method benchmarking. Genome Biol. 2019; 20(1): 125. 
PubMed Abstract | Publisher Full Text | Free Full Text 

18.  Capella-Gutierrez S, de la Iglesia D, Haas J, et al.: Lessons Learned: 
Recommendations for Establishing Critical Periodic Scientific 
Benchmarking. bioRxiv. 2017.  
Publisher Full Text 

19.  Belmann P, Dröge J, Bremges A, et al.: Bioboxes: standardised containers 
for interchangeable bioinformatics software. Gigascience. 2015; 4(1): 47. 
PubMed Abstract | Publisher Full Text | Free Full Text 

20.  Sangwan N, Xia F, Gilbert JA: Recovering complete and draft population 
genomes from metagenome datasets. Microbiome. 2016; 4: 8.  
PubMed Abstract | Publisher Full Text | Free Full Text 

21.  Del Fabbro C, Scalabrin S, Morgante M, et al.: An Extensive Evaluation of Read 
Trimming Effects on Illumina NGS Data Analysis. PLoS One. 2013; 8(12): 
e85024.  
PubMed Abstract | Publisher Full Text | Free Full Text 

22.  Fox EJ, Reid-Bayliss KS, Emond MJ, et al.: Accuracy of Next Generation 
Sequencing Platforms. Next Gener Seq Appl. 2014; 1: 1000106.  
PubMed Abstract | Free Full Text 

23.  Ip CLC, Loose M, Tyson JR, et al.: MinION Analysis and Reference Consortium: 
Phase 1 data release and analysis. [version 1; peer review: 2 approved]. 
F1000Res. 2015; 4: 1075.  
PubMed Abstract | Publisher Full Text | Free Full Text 

24.  Ardui S, Ameur A, Vermeesch JR, et al.: Single molecule real-time (SMRT) 
sequencing comes of age: applications and utilities for medical 
diagnostics. Nucleic Acids Res. 2018; 46(5): 2159–2168.  
PubMed Abstract | Publisher Full Text | Free Full Text 

25.  Giordano F, Aigrain L, Quail MA, et al.: De novo yeast genome assemblies from 
MinION, PacBio and MiSeq platforms. Sci Rep. 2017; 7(1): 3935.  
PubMed Abstract | Publisher Full Text | Free Full Text 

26.  Kaas RS, Leekitcharoenphon P, Aarestrup FM, et al.: Solving the Problem 
of Comparing Whole Bacterial Genomes across Different Sequencing 
Platforms. PLoS One. 2014; 9(8): e104984.  
PubMed Abstract | Publisher Full Text | Free Full Text 

27.  European Food Safety Authority (EFSA), Fierro RG, Thomas-Lopez D, et al.: 
Outcome of EC/EFSA questionnaire (2016) on use of Whole Genome 
Sequencing (WGS) for food‐ and waterborne pathogens isolated from 
animals, food, feed and related environmental samples in EU/EFTA 
countries. EFSA Support Publ. 2018; 15(6): 1432E.  
Publisher Full Text 

28.  Revez J, Espinosa L, Albiger B, et al.: Survey on the use of Whole-Genome 
Sequencing for infectious diseases surveillance: rapid expansion of 
European national capacities, 2015–2016. Front Public Health. 2017; 5: 347. 
PubMed Abstract | Publisher Full Text | Free Full Text 

29.  Arredondo-Alonso S, Willems RJ, van Schaik W, et al.: On the (im)possibility of 
reconstructing plasmids from whole-genome short-read sequencing data. 
Microb Genom. 2017; 3(10): e000128.  
PubMed Abstract | Publisher Full Text | Free Full Text 

30.  Lemon JK, Khil PP, Frank KM, et al.: Rapid Nanopore Sequencing of Plasmids 
and Resistance Gene Detection in Clinical Isolates. J Clin Microbiol. 2017; 
55(12): 3530–3543.  
PubMed Abstract | Publisher Full Text | Free Full Text 

31.  Greig DR, Dallman TJ, Hopkins KL, et al.: MinION nanopore sequencing 
identifies the position and structure of bacterial antibiotic resistance 
determinants in a multidrug-resistant strain of enteroaggregative 
Escherichia coli. Microb Genom. 2018; 4(10): e000213.  
PubMed Abstract | Publisher Full Text | Free Full Text 

32.  Cao MD, Nguyen SH, Ganesamoorthy D, et al.: Scaffolding and completing 
genome assemblies in real-time with nanopore sequencing. Nat Commun. 
2017; 8(1): 14515.  
PubMed Abstract | Publisher Full Text | Free Full Text 

33.  Ashton PM, Nair S, Dallman T, et al.: MinION nanopore sequencing identifies 
the position and structure of a bacterial antibiotic resistance island. Nat 
Biotechnol. 2015; 33(3): 296–300.  
PubMed Abstract | Publisher Full Text 

34.  Xie H, Yang C, Sun Y, et al.: PacBio Long Reads Improve Metagenomic 
Assemblies, Gene Catalogs, and Genome Binning. Front Genet. 2020; 11: 
516269.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 17 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024

http://www.ncbi.nlm.nih.gov/pubmed/32048983
http://dx.doi.org/10.1099/mgen.0.000335
http://www.ncbi.nlm.nih.gov/pmc/articles/7067211
http://www.ncbi.nlm.nih.gov/pubmed/28592550
http://dx.doi.org/10.1128/JCM.00361-17
http://www.ncbi.nlm.nih.gov/pmc/articles/5527429
http://www.ncbi.nlm.nih.gov/pubmed/27890457
http://dx.doi.org/10.1016/j.cmi.2016.11.012
http://www.ncbi.nlm.nih.gov/pubmed/29117578
http://dx.doi.org/10.1016/j.cmi.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/31231317
http://dx.doi.org/10.3389/fmicb.2019.01107
http://www.ncbi.nlm.nih.gov/pmc/articles/6558386
http://www.ncbi.nlm.nih.gov/pubmed/32626197
http://dx.doi.org/10.2903/j.efsa.2019.5898
http://www.ncbi.nlm.nih.gov/pmc/articles/7008917
http://www.ncbi.nlm.nih.gov/pubmed/31552211
http://dx.doi.org/10.3389/fpubh.2019.00242
http://www.ncbi.nlm.nih.gov/pmc/articles/6737581
http://www.ncbi.nlm.nih.gov/pubmed/30886350
http://dx.doi.org/10.1038/s41576-019-0108-4
http://www.ncbi.nlm.nih.gov/pmc/articles/6525649
http://www.ncbi.nlm.nih.gov/pubmed/31964771
http://dx.doi.org/10.1128/mSystems.00774-19
http://www.ncbi.nlm.nih.gov/pmc/articles/6977075
http://www.ncbi.nlm.nih.gov/pubmed/28105974
http://dx.doi.org/10.5740/jaoacint.16-0269
http://www.ncbi.nlm.nih.gov/pubmed/31346170
http://dx.doi.org/10.1038/s41467-019-11306-6
http://www.ncbi.nlm.nih.gov/pmc/articles/6658474
http://www.ncbi.nlm.nih.gov/pubmed/28626224
http://dx.doi.org/10.1038/nrg.2017.44
http://www.ncbi.nlm.nih.gov/pubmed/30918265
http://dx.doi.org/10.1038/s41467-019-09406-4
http://www.ncbi.nlm.nih.gov/pmc/articles/6437167
http://dx.doi.org/10.2760/745099
http://www.ncbi.nlm.nih.gov/pubmed/31439928
http://dx.doi.org/10.1038/s41564-019-0503-9
http://www.ncbi.nlm.nih.gov/pubmed/30026930
http://dx.doi.org/10.12688/f1000research.14509.2
http://www.ncbi.nlm.nih.gov/pmc/articles/6039958
http://www.ncbi.nlm.nih.gov/pubmed/31221194
http://dx.doi.org/10.1186/s13059-019-1738-8
http://www.ncbi.nlm.nih.gov/pmc/articles/6584985
http://dx.doi.org/10.1101/181677
http://www.ncbi.nlm.nih.gov/pubmed/26473029
http://dx.doi.org/10.1186/s13742-015-0087-0
http://www.ncbi.nlm.nih.gov/pmc/articles/4607242
http://www.ncbi.nlm.nih.gov/pubmed/26951112
http://dx.doi.org/10.1186/s40168-016-0154-5
http://www.ncbi.nlm.nih.gov/pmc/articles/4782286
http://www.ncbi.nlm.nih.gov/pubmed/24376861
http://dx.doi.org/10.1371/journal.pone.0085024
http://www.ncbi.nlm.nih.gov/pmc/articles/3871669
http://www.ncbi.nlm.nih.gov/pubmed/25699289
http://www.ncbi.nlm.nih.gov/pmc/articles/4331009
http://www.ncbi.nlm.nih.gov/pubmed/26834992
http://dx.doi.org/10.12688/f1000research.7201.1
http://www.ncbi.nlm.nih.gov/pmc/articles/4722697
http://www.ncbi.nlm.nih.gov/pubmed/29401301
http://dx.doi.org/10.1093/nar/gky066
http://www.ncbi.nlm.nih.gov/pmc/articles/5861413
http://www.ncbi.nlm.nih.gov/pubmed/28638050
http://dx.doi.org/10.1038/s41598-017-03996-z
http://www.ncbi.nlm.nih.gov/pmc/articles/5479803
http://www.ncbi.nlm.nih.gov/pubmed/25110940
http://dx.doi.org/10.1371/journal.pone.0104984
http://www.ncbi.nlm.nih.gov/pmc/articles/4128722
http://dx.doi.org/10.2903/sp.efsa.2018.EN-1432
http://www.ncbi.nlm.nih.gov/pubmed/29326921
http://dx.doi.org/10.3389/fpubh.2017.00347
http://www.ncbi.nlm.nih.gov/pmc/articles/5741818
http://www.ncbi.nlm.nih.gov/pubmed/29177087
http://dx.doi.org/10.1099/mgen.0.000128
http://www.ncbi.nlm.nih.gov/pmc/articles/5695206
http://www.ncbi.nlm.nih.gov/pubmed/29021151
http://dx.doi.org/10.1128/JCM.01069-17
http://www.ncbi.nlm.nih.gov/pmc/articles/5703817
http://www.ncbi.nlm.nih.gov/pubmed/30235111
http://dx.doi.org/10.1099/mgen.0.000213
http://www.ncbi.nlm.nih.gov/pmc/articles/6249433
http://www.ncbi.nlm.nih.gov/pubmed/28218240
http://dx.doi.org/10.1038/ncomms14515
http://www.ncbi.nlm.nih.gov/pmc/articles/5321748
http://www.ncbi.nlm.nih.gov/pubmed/25485618
http://dx.doi.org/10.1038/nbt.3103
http://www.ncbi.nlm.nih.gov/pubmed/33101371
http://dx.doi.org/10.3389/fgene.2020.516269
http://www.ncbi.nlm.nih.gov/pmc/articles/7506068


35.  Schmidt K, Mwaigwisya S, Crossman LC, et al.: Identification of bacterial 
pathogens and antimicrobial resistance directly from clinical urines by 
nanopore-based metagenomic sequencing. J Antimicrob Chemother. 2017; 
72(1): 104–114.  
PubMed Abstract | Publisher Full Text 

36.  Arredondo-Alonso S, Top J, McNally A, et al.: Plasmids Shaped the Recent 
Emergence of the Major Nosocomial Pathogen Enterococcus faecium. mBio. 
2020; 11(1): e03284–19.  
PubMed Abstract | Publisher Full Text | Free Full Text 

37.  Charalampous T, Kay GL, Richardson H, et al.: Nanopore metagenomics 
enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat 
Biotechnol. 2019; 37(7): 783–792.  
PubMed Abstract | Publisher Full Text 

38.  Cock PJA, Fields CJ, Goto N, et al.: The Sanger FASTQ file format for sequences 
with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids 
Res. 2010; 38(6): 1767–1771.  
PubMed Abstract | Publisher Full Text | Free Full Text 

39.  Holtgrewe M, Messerschmidt C, Nieminen M, et al.: Digestiflow: from BCL to 
FASTQ with ease. Bioinformatics. 2019; 7: e27717v4.  
Publisher Full Text 

40.  Loman NJ, Quinlan AR: Poretools: a toolkit for analyzing nanopore sequence 
data. Bioinformatics. 2014; 30(23): 3399–3401.  
PubMed Abstract | Publisher Full Text | Free Full Text 

41.  Zhang H: Overview of Sequence Data Formats. In: Statistical Genomics. E. 
Mathé and S. Davis, Eds. New York, NY: Springer New York, 2016; 1418: 3–17. 
Publisher Full Text 

42.  Bradley P, Gordon NC, Walker TM, et al.: Rapid antibiotic-resistance 
predictions from genome sequence data for Staphylococcus aureus and 
Mycobacterium tuberculosis. Nat Commun. 2015; 6: 10063.  
PubMed Abstract | Publisher Full Text | Free Full Text 

43.  Clausen PTLC, Aarestrup FM, Lund O: Rapid and precise alignment of raw 
reads against redundant databases with KMA. BMC Bioinformatics. 2018; 
19(1): 307.  
PubMed Abstract | Publisher Full Text | Free Full Text 

44.  Jiménez RC, Kuzak M, Alhamdoosh M, et al.: Four simple recommendations 
to encourage best practices in research software [version 1; peer review: 3 
approved]. F1000Res. 2017; 6: ELIXIR-876.  
PubMed Abstract | Publisher Full Text | Free Full Text 

45.  Peng B, Chen HS, Mechanic LE, et al.: Genetic Simulation Resources: a 
website for the registration and discovery of genetic data simulators. 
Bioinformatics. 2013; 29(8): 1101–1102.  
PubMed Abstract | Publisher Full Text | Free Full Text 

46.  Chen HS, Hutter CM, Mechanic LE, et al.: Genetic Simulation Tools for Post-
Genome Wide Association Studies of Complex Diseases. Genet Epidemiol. 
2015; 39(1): 11–19.  
PubMed Abstract | Publisher Full Text | Free Full Text 

47.  Peng B, Leong MC, Chen HS, et al.: Genetic Simulation Resources and the 
GSR Certification Program. Bioinformatics. 2019; 35(4): 709–710.  
PubMed Abstract | Publisher Full Text | Free Full Text 

48.  Escalona M, Rocha S, Posada D: A comparison of tools for the simulation 
of genomic next-generation sequencing data. Nat Rev Genet. 2016; 17(8): 
459–469.  
PubMed Abstract | Publisher Full Text | Free Full Text 

49.  Huang W, Li L, Myers JR, et al.: ART: a next-generation sequencing read 
simulator. Bioinformatics. 2012; 28(4): 593–594.  
PubMed Abstract | Publisher Full Text | Free Full Text 

50.  Stephens ZD, Hudson ME, Mainzer LS, et al.: Simulating Next-Generation 
Sequencing Datasets from Empirical Mutation and Sequencing Models. 
PLoS One. 2016; 11(11): e0167047.  
PubMed Abstract | Publisher Full Text | Free Full Text 

51.  Bolognini D, Sanders A, Korbel JO, et al.: VISOR: a versatile haplotype-
aware structural variant simulator for short- and long-read sequencing. 
Bioinformatics. 2020; 36(4): 1267–1269.  
PubMed Abstract | Publisher Full Text 

52.  Portmann AC, Fournier C, Gimonet J, et al.: A Validation Approach of an 
End-to-End Whole Genome Sequencing Workflow for Source Tracking of 
Listeria monocytogenes and Salmonella enterica. Front Microbiol. 2018; 9: 446. 
PubMed Abstract | Publisher Full Text | Free Full Text 

53.  Bogaerts B, Winand R, Fu Q, et al.: Validation of a Bioinformatics Workflow 
for Routine Analysis of Whole-Genome Sequencing Data and Related 
Challenges for Pathogen Typing in a European National Reference Center: 
Neisseria meningitidis as a Proof-of-Concept. Front Microbiol. 2019; 10: 362. 
PubMed Abstract | Publisher Full Text | Free Full Text 

54.  Andrews S: FastQC: a quality control tool for high throughput sequence 
data. Babraham Bioinformatics. Babraham Institute, Cambridge, United 
Kingdom, 2010.  
Reference Source

55.  Chen YC, Liu T, Yu CH, et al.: Effects of GC Bias in Next-Generation-
Sequencing Data on De Novo Genome Assembly. PLoS One. 2013; 8(4): 
e62856.  
PubMed Abstract | Publisher Full Text | Free Full Text 

56.  Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the 
elusive mis-assembly. Genome Biol. 2008; 9(3): R55.  
PubMed Abstract | Publisher Full Text | Free Full Text 

57.  Su M, Satola SW, Read TD: Genome-Based Prediction of Bacterial Antibiotic 
Resistance. J Clin Microbiol. 2019; 57(3): e01405–18.  
PubMed Abstract | Publisher Full Text | Free Full Text 

58.  Ruppé E, Cherkaoui A, Charretier Y, et al.: From genotype to antibiotic 
susceptibility phenotype in the order Enterobacterales: a clinical 
perspective. Clin Microbiol Infect. 2020; 26(5): 643.e1–643.e7.  
PubMed Abstract | Publisher Full Text 

59.  Martínez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in 
resistomes. Nat Rev Microbiol. 2015; 13(2): 116–123.  
PubMed Abstract | Publisher Full Text 

60.  Baker S, Thomson N, Weill FX, et al.: Genomic insights into the emergence 
and spread of antimicrobial-resistant bacterial pathogens. Science. 2018; 
360(6390): 733–738.  
PubMed Abstract | Publisher Full Text | Free Full Text 

61.  European Food Safety Authority, European Centre for Disease Prevention and 
Control: The European Union Summary Report on antimicrobial resistance 
in zoonotic and indicator bacteria from humans, animals and food in 
2011. EU summary report on antimicrobial resistance in zoonotic and indicator 
bacteria from humans, animals and food 2011. EFSA J. 2013; 11(5): 3196.  
Publisher Full Text 

62.  Toutain PL, Bousquet-Mélou A, Damborg P, et al.: En Route towards European 
Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: a 
position paper explaining the VetCAST Approach. Front Microbiol. 2017; 8: 
2344.  
PubMed Abstract | Publisher Full Text | Free Full Text 

63.  Leinonen R, Sugawara H, Shumway M, et al.: The Sequence Read Archive. 
Nucleic Acids Res. 2011; 39(Database issue): D19–D21.  
PubMed Abstract | Publisher Full Text | Free Full Text 

64.  Stoesser G, Baker W, van den Broek A, et al.: The EMBL Nucleotide Sequence 
Database. Nucleic Acids Res. 2002; 30(1): 21–26.  
PubMed Abstract | Publisher Full Text | Free Full Text 

65.  Gostev M, Faulconbridge A, Brandizi M, et al.: The BioSample database 
(BioSD) at the european bioinformatics institute. Nucleic Acids Res. 2012; 
40(Database issue): D64–D70.  
PubMed Abstract | Publisher Full Text | Free Full Text 

66.  Zakaria O, Rezali MF: Reference Materials as a Crucial Tools for Validation 
and Verification of the Analytical Process. Procedia Soc Behav Sci. 2014; 121: 
204–213.  
Publisher Full Text 

67.  Zook JM, Catoe D, McDaniel J, et al.: Extensive sequencing of seven human 
genomes to characterize benchmark reference materials. Sci Data. 2016; 3: 
160025.  
PubMed Abstract | Publisher Full Text | Free Full Text 

68.  WHO: WHO publishes list of bacteria for which new antibiotics are urgently 
needed.  
Reference Source

69.  European Centre for disease prevention and control (ECDC): Antimicrobial 
resistance (AMR) reporting protocol 2018.  
Reference Source

70.  European Commission: 2013/652/EU: Commission Implementing Decision 
of 12 November 2013 on the monitoring and reporting of antimicrobial 
resistance in zoonotic and commensal bacteria. 2013.  
Reference Source

71.  W. OIE: OIE list of antimicrobial agents of veterinary importance. 2015. 
Reference Source

72.  Scott HM, Acuff G, Bergeron G, et al.: Critically important antibiotics: criteria 
and approaches for measuring and reducing their use in food animal 
agriculture. Ann N Y Acad Sci. 2019; 1441(1): 8–16.  
PubMed Abstract | Publisher Full Text | Free Full Text 

73.  Xavier BB, Das AJ, Cochrane G, et al.: Consolidating and Exploring Antibiotic 
Resistance Gene Data Resources. J Clin Microbiol. 2016; 54(4): 851–859. 
PubMed Abstract | Publisher Full Text | Free Full Text 

74.  Sadouki Z, Day MR, Doumith M, et al.: Comparison of phenotypic and 
WGS-derived antimicrobial resistance profiles of Shigella sonnei isolated 
from cases of diarrhoeal disease in England and Wales, 2015. J Antimicrob 
Chemother. 2017; 72(9): 2496–2502.  
PubMed Abstract | Publisher Full Text 

75.  Bogaerts B, Delcourt T, Soetaert K, et al.: A Bioinformatics Whole-Genome 
Sequencing Workflow for Clinical Mycobacterium tuberculosis Complex 
Isolate Analysis, Validated Using a Reference Collection Extensively 
Characterized with Conventional Methods and In Silico Approaches. J Clin 
Microbiol. 2021; 59(6): e00202–21.  
PubMed Abstract | Publisher Full Text | Free Full Text

76.  Walker TM, Kohl TA, Omar SV, et al.: Whole-genome sequencing for 
prediction of Mycobacterium tuberculosis drug susceptibility and 
resistance: a retrospective cohort study. Lancet Infect Dis. 2015; 15(10): 
1193–1202.  
PubMed Abstract | Publisher Full Text | Free Full Text 

77.  Votintseva AA, Bradley P, Pankhurst L, et al.: Same-day diagnostic and 
surveillance data for tuberculosis via whole-genome sequencing of direct 
respiratory samples. J Clin Microbiol. 2017; 55(5): 1285–1298.  
PubMed Abstract | Publisher Full Text | Free Full Text 

78.  Mellmann A, Bletz S, Böking T, et al.: Real-Time Genome Sequencing of 
Resistant Bacteria Provides Precision Infection Control in an Institutional 

Page 18 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024

http://www.ncbi.nlm.nih.gov/pubmed/27667325
http://dx.doi.org/10.1093/jac/dkw397
http://www.ncbi.nlm.nih.gov/pubmed/32047136
http://dx.doi.org/10.1128/mBio.03284-19
http://www.ncbi.nlm.nih.gov/pmc/articles/7018651
http://www.ncbi.nlm.nih.gov/pubmed/31235920
http://dx.doi.org/10.1038/s41587-019-0156-5
http://www.ncbi.nlm.nih.gov/pubmed/20015970
http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pmc/articles/2847217
http://dx.doi.org/10.7287/peerj.preprints.27717v4
http://www.ncbi.nlm.nih.gov/pubmed/25143291
http://dx.doi.org/10.1093/bioinformatics/btu555
http://www.ncbi.nlm.nih.gov/pmc/articles/4296151
http://dx.doi.org/10.1007/978-1-4939-3578-9_1
http://www.ncbi.nlm.nih.gov/pubmed/26686880
http://dx.doi.org/10.1038/ncomms10063
http://www.ncbi.nlm.nih.gov/pmc/articles/4703848
http://www.ncbi.nlm.nih.gov/pubmed/30157759
http://dx.doi.org/10.1186/s12859-018-2336-6
http://www.ncbi.nlm.nih.gov/pmc/articles/6116485
http://www.ncbi.nlm.nih.gov/pubmed/28751965
http://dx.doi.org/10.12688/f1000research.11407.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5490478
http://www.ncbi.nlm.nih.gov/pubmed/23435068
http://dx.doi.org/10.1093/bioinformatics/btt094
http://www.ncbi.nlm.nih.gov/pmc/articles/3624809
http://www.ncbi.nlm.nih.gov/pubmed/25371374
http://dx.doi.org/10.1002/gepi.21870
http://www.ncbi.nlm.nih.gov/pmc/articles/4270837
http://www.ncbi.nlm.nih.gov/pubmed/30101297
http://dx.doi.org/10.1093/bioinformatics/bty666
http://www.ncbi.nlm.nih.gov/pmc/articles/6378936
http://www.ncbi.nlm.nih.gov/pubmed/27320129
http://dx.doi.org/10.1038/nrg.2016.57
http://www.ncbi.nlm.nih.gov/pmc/articles/5224698
http://www.ncbi.nlm.nih.gov/pubmed/22199392
http://dx.doi.org/10.1093/bioinformatics/btr708
http://www.ncbi.nlm.nih.gov/pmc/articles/3278762
http://www.ncbi.nlm.nih.gov/pubmed/27893777
http://dx.doi.org/10.1371/journal.pone.0167047
http://www.ncbi.nlm.nih.gov/pmc/articles/5125660
http://www.ncbi.nlm.nih.gov/pubmed/31589307
http://dx.doi.org/10.1093/bioinformatics/btz719
http://www.ncbi.nlm.nih.gov/pubmed/29593690
http://dx.doi.org/10.3389/fmicb.2018.00446
http://www.ncbi.nlm.nih.gov/pmc/articles/5861296
http://www.ncbi.nlm.nih.gov/pubmed/30894839
http://dx.doi.org/10.3389/fmicb.2019.00362
http://www.ncbi.nlm.nih.gov/pmc/articles/6414443
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ncbi.nlm.nih.gov/pubmed/23638157
http://dx.doi.org/10.1371/journal.pone.0062856
http://www.ncbi.nlm.nih.gov/pmc/articles/3639258
http://www.ncbi.nlm.nih.gov/pubmed/18341692
http://dx.doi.org/10.1186/gb-2008-9-3-r55
http://www.ncbi.nlm.nih.gov/pmc/articles/2397507
http://www.ncbi.nlm.nih.gov/pubmed/30381421
http://dx.doi.org/10.1128/JCM.01405-18
http://www.ncbi.nlm.nih.gov/pmc/articles/6425178
http://www.ncbi.nlm.nih.gov/pubmed/31586657
http://dx.doi.org/10.1016/j.cmi.2019.09.018
http://www.ncbi.nlm.nih.gov/pubmed/25534811
http://dx.doi.org/10.1038/nrmicro3399
http://www.ncbi.nlm.nih.gov/pubmed/29773743
http://dx.doi.org/10.1126/science.aar3777
http://www.ncbi.nlm.nih.gov/pmc/articles/6510332
http://dx.doi.org/10.2903/j.efsa.2013.3196
http://www.ncbi.nlm.nih.gov/pubmed/29326661
http://dx.doi.org/10.3389/fmicb.2017.02344
http://www.ncbi.nlm.nih.gov/pmc/articles/5736858
http://www.ncbi.nlm.nih.gov/pubmed/21062823
http://dx.doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pmc/articles/3013647
http://www.ncbi.nlm.nih.gov/pubmed/11752244
http://dx.doi.org/10.1093/nar/30.1.21
http://www.ncbi.nlm.nih.gov/pmc/articles/99098
http://www.ncbi.nlm.nih.gov/pubmed/22096232
http://dx.doi.org/10.1093/nar/gkr937
http://www.ncbi.nlm.nih.gov/pmc/articles/3245134
http://dx.doi.org/10.1016/j.sbspro.2014.01.1121
http://www.ncbi.nlm.nih.gov/pubmed/27271295
http://dx.doi.org/10.1038/sdata.2016.25
http://www.ncbi.nlm.nih.gov/pmc/articles/4896128
https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
https://www.ecdc.europa.eu/sites/default/files/documents/EARS-Net reporting protocol 2018. docx.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0652&from=EN
https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_OIE_List_antimicrobials_May2018.pdf
http://www.ncbi.nlm.nih.gov/pubmed/30924540
http://dx.doi.org/10.1111/nyas.14058
http://www.ncbi.nlm.nih.gov/pmc/articles/6850619
http://www.ncbi.nlm.nih.gov/pubmed/26818666
http://dx.doi.org/10.1128/JCM.02717-15
http://www.ncbi.nlm.nih.gov/pmc/articles/4809949
http://www.ncbi.nlm.nih.gov/pubmed/28591819
http://dx.doi.org/10.1093/jac/dkx170
http://www.ncbi.nlm.nih.gov/pubmed/33789960
http://dx.doi.org/10.1128/JCM.00202-21
http://www.ncbi.nlm.nih.gov/pmc/articles/8316078
http://www.ncbi.nlm.nih.gov/pubmed/26116186
http://dx.doi.org/10.1016/S1473-3099(15)00062-6
http://www.ncbi.nlm.nih.gov/pmc/articles/4579482
http://www.ncbi.nlm.nih.gov/pubmed/28275074
http://dx.doi.org/10.1128/JCM.02483-16
http://www.ncbi.nlm.nih.gov/pmc/articles/5405248


Setting. J Clin Microbiol. 2016; 54(12): 2874–2881.  
PubMed Abstract | Publisher Full Text | Free Full Text 

79.  Wilkinson MD, Dumontier M, Aalbersberg IJ, et al.: The FAIR Guiding Principles 
for scientific data management and stewardship. Sci Data. 2016; 3(1): 
160018.  
PubMed Abstract | Publisher Full Text | Free Full Text 

80.  Berger FK, Mellmann A, von Müller L, et al.: Quality assurance for genotyping 
and resistance testing of Clostridium (Clostridioides) difficile isolates 
- Experiences from the first inter-laboratory ring trial in four German 
speaking countries. Anaerobe. 2020; 61: 102093.  
PubMed Abstract | Publisher Full Text 

81.  Mensah N, Tang Y, Cawthraw S, et al.: Determining antimicrobial 
susceptibility in Salmonella enterica serovar Typhimurium through 
whole genome sequencing: a comparison against multiple phenotypic 
susceptibility testing methods. BMC Microbiol. 2019; 19(1): 148.  
PubMed Abstract | Publisher Full Text | Free Full Text 

82.  Stubberfield E, AbuOun M, Sayers E, et al.: Use of whole genome sequencing 
of commensal Escherichia coli in pigs for antimicrobial resistance 
surveillance, United Kingdom, 2018. Euro Surveill. 2019; 24(50): 1900136. 
PubMed Abstract | Publisher Full Text | Free Full Text 

83.  Deplano A, Dodémont M, Denis O, et al.: European external quality 
assessments for identification, molecular typing and characterization 
of Staphylococcus aureus. J Antimicrob Chemother. 2018; 73(10): 2662–2666. 
PubMed Abstract | Publisher Full Text 

84.  Johansen TB, Scheffer L, Jensen VK, et al.: Whole-genome sequencing 
and antimicrobial resistance in Brucella melitensis from a Norwegian 
perspective. Sci Rep. 2018; 8(1): 8538.  
PubMed Abstract | Publisher Full Text | Free Full Text 

85.  Neuert S, Nair S, Day MR, et al.: Prediction of Phenotypic Antimicrobial 
Resistance Profiles From Whole Genome Sequences of Non-typhoidal 
Salmonella enterica. Front Microbiol. 2018; 9: 592.  
PubMed Abstract | Publisher Full Text | Free Full Text 

86.  Karlsmose PS, Hendriksen RS, Bortolaia V: The 23rd EURL-AR Proficiency 
TestSalmonella, Campylobacter and genotypic characterisation 2017. 
Reference Source

87.  Pietsch M, Irrgang A, Roschanski N, et al.: Whole genome analyses of CMY-
2-producing Escherichia coli isolates from humans, animals and food in 
Germany. BMC Genomics. 2018; 19(1): 601.  
PubMed Abstract | Publisher Full Text | Free Full Text 

88.  Tyson GH, Sabo JL, Rice-Trujillo C, et al.: Whole-genome sequencing based 
characterization of antimicrobial resistance in Enterococcus. Pathog Dis. 
2018; 76(2).  
PubMed Abstract | Publisher Full Text 

89.  Bossé JT, Li Y, Rogers J, et al.: Whole Genome Sequencing for Surveillance of 
Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Front Microbiol. 
2017; 8: 311.  
PubMed Abstract | Publisher Full Text | Free Full Text 

90.  Brhelova E, Antonova M, Pardy F, et al.: Investigation of next-generation 
sequencing data of Klebsiella pneumoniae using web-based tools. J Med 
Microbiol. 2017; 66(11): 1673–1683.  
PubMed Abstract | Publisher Full Text 

91.  Carroll LM, Wiedmann M, den Bakker H, et al.: Whole-Genome Sequencing of 
Drug-Resistant Salmonella enterica Isolates from Dairy Cattle and Humans 
in New York and Washington States Reveals Source and Geographic 
Associations. Appl Environ Microbiol. 2017; 83(12): e00140–17.  
PubMed Abstract | Publisher Full Text | Free Full Text 

92.  Day M, Doumith M, Jenkins C, et al.: Antimicrobial resistance in Shiga toxin-
producing Escherichia coli. serogroups O157 and O26 isolated from human 
cases of diarrhoeal disease in England, 2015. J Antimicrob Chemother. 2017; 
72(1): 145–152.  
PubMed Abstract | Publisher Full Text 

93.  Global Microbial Identifier initiative’s Working Group 4: The proficiency test 
(pilot) report of the global microbial identifier (GMI) initiative, year 2014. 
Reference Source

94.  McDermott PF, Tyson GH, Kabera C, et al.: Whole-Genome Sequencing for 
Detecting Antimicrobial Resistance in Nontyphoidal Salmonella. Antimicrob 
Agents Chemother. 2016; 60(9): 5515–5520.  
PubMed Abstract | Publisher Full Text | Free Full Text 

95.  Tyson GH, McDermott PK, Li C, et al.: WGS accurately predicts antimicrobial 
resistance in Escherichia coli. J Antimicrob Chemother. 2015; 70(10): 2763–2769. 
PubMed Abstract | Publisher Full Text 

96.  Zhao S, Tyson GH, Chen Y, et al.: Whole-Genome Sequencing Analysis 
Accurately Predicts Antimicrobial Resistance Phenotypes in 
Campylobacter spp. Appl Environ Microbiol. 2015; 82(2): 459–466.  
PubMed Abstract | Publisher Full Text | Free Full Text 

97.  Kos VN, Déraspe M, McLaughlin RE, et al.: The Resistome of Pseudomonas 
aeruginosa in Relationship to Phenotypic Susceptibility. Antimicrob Agents 
Chemother. 2015; 59(1): 427–436.  
PubMed Abstract | Publisher Full Text | Free Full Text 

98.  Gordon NC, Price JR, Cole K, et al.: Prediction of Staphylococcus aureus 
antimicrobial resistance by whole-genome sequencing. J Clin Microbiol. 
2014; 52(4): 1182–1191.  
PubMed Abstract | Publisher Full Text | Free Full Text 

99.  Stoesser N, Batty EM, Eyre DW, et al.: Predicting antimicrobial susceptibilities 
for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic 
sequence data. J Antimicrob Chemother. 2013; 68(10): 2234–2244.  
PubMed Abstract | Publisher Full Text | Free Full Text 

100.  Eyre DW, Golubchik T, Gordon NC, et al.: A pilot study of rapid benchtop 
sequencing of Staphylococcus aureus. and Clostridium difficile. for outbreak 
detection and surveillance. BMJ Open. 2012; 2(3): e001124.  
PubMed Abstract | Publisher Full Text | Free Full Text 

101.  Zankari E, Hasman H, Kaas RS, et al.: Genotyping using whole-genome 
sequencing is a realistic alternative to surveillance based on phenotypic 
antimicrobial susceptibility testing. J Antimicrob Chemother. 2013; 68(4): 
771–777.  
PubMed Abstract | Publisher Full Text 

102.  Cooper AL, Low AJ, Koziol AG, et al.: Systematic Evaluation of Whole Genome 
Sequence-Based Predictions of Salmonella Serotype and Antimicrobial 
Resistance. Front Microbiol. 2020; 11: 549.  
PubMed Abstract | Publisher Full Text | Free Full Text 

103.  Berglund F, Marathe NP, Österlund T, et al.: Identification of 76 novel B1 
metallo-β-lactamases through large-scale screening of genomic and 
metagenomic data. Microbiome. 2017; 5(1): 134.  
PubMed Abstract | Publisher Full Text | Free Full Text 

104.  Hatosy SM, Martiny AC: The ocean as a global reservoir of antibiotic 
resistance genes. Appl Environ Microbiol. 2015; 81(21): 7593–7599.  
PubMed Abstract | Publisher Full Text | Free Full Text 

105.  Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors 
influencing the development and spread of antibiotic resistance. FEMS 
Microbiol Rev. 2018; 42(1): fux053.  
PubMed Abstract | Publisher Full Text | Free Full Text 

106.  Ashbolt NJ, Amézquita A, Backhaus T, et al.: Human Health Risk Assessment 
(HHRA) for Environmental Development and Transfer of Antibiotic 
Resistance. Environ Health Perspect. 2013; 121(9): 993–1001.  
PubMed Abstract | Publisher Full Text | Free Full Text 

107.  Martínez JL, Coque TM, Baquero F: Prioritizing risks of antibiotic resistance 
genes in all metagenomes. Nat Rev Microbiol. 2015; 13(6): 396–396.  
PubMed Abstract | Publisher Full Text 

108.  Wright GD: The antibiotic resistome: the nexus of chemical and genetic 
diversity. Nat Rev Microbiol. 2007; 5(3): 175–186.  
PubMed Abstract | Publisher Full Text 

109.  Perry JA, Westman EL, Wright GD: The antibiotic resistome: what’s new? Curr 
Opin Microbiol. 2014; 21: 45–50.  
PubMed Abstract | Publisher Full Text 

110.  Berendonk TU, Manaia CM, Merlin C, et al.: Tackling antibiotic resistance: the 
environmental framework. Nat Rev Microbiol. 2015; 13(5): 310–317.  
PubMed Abstract | Publisher Full Text 

111.  Sinha T, Vila AV, Garmaeva S, et al.: Analysis of 1135 gut metagenomes 
identifies sex-specific resistome profiles. Gut Microbes. 2019; 10(3): 358–366. 
PubMed Abstract | Publisher Full Text | Free Full Text 

112.  Liu J, Taft DH, Maldonado-Gomez MX, et al.: The fecal resistome of dairy 
cattle is associated with diet during nursing. Nat Commun. 2019; 10(1): 4406. 
PubMed Abstract | Publisher Full Text | Free Full Text 

113.  Ruppé E, Ghozlane A, Tap J, et al.: Prediction of the intestinal resistome by 
a three-dimensional structure-based method. Nat Microbiol. 2019; 4(1): 
112–123.  
PubMed Abstract | Publisher Full Text 

114.  Sczyrba A, Hofmann P, Belmann P, et al.: Critical Assessment of Metagenome 
Interpretation-a benchmark of metagenomics software. Nat Methods. 2017; 
14(11): 1063–1071.  
PubMed Abstract | Publisher Full Text | Free Full Text 

115.  Fritz A, Hofmann P, Majda S, et al.: CAMISIM: simulating metagenomes and 
microbial communities. Microbiome. 2019; 7(1): 17.  
PubMed Abstract | Publisher Full Text | Free Full Text 

116.  Ma L, Li B, Zhang T: New insights into antibiotic resistome in drinking water 
and management perspectives: A metagenomic based study of small-sized 
microbes. Water Res. 2019; 152: 191–201.  
PubMed Abstract | Publisher Full Text 

117.  Bai Y, Ruan X, Xie X, et al.: Antibiotic resistome profile based on 
metagenomics in raw surface drinking water source and the influence of 
environmental factor: A case study in Huaihe River Basin, China. Environ 
Pollut. 2019; 248: 438–447.  
PubMed Abstract | Publisher Full Text 

118.  Ju F, Beck K, Yin X, et al.: Wastewater treatment plant resistomes are shaped 
by bacterial composition, genetic exchange, and upregulated expression 
in the effluent microbiomes. ISME J. 2019; 13(2): 346–360.  
PubMed Abstract | Publisher Full Text | Free Full Text 

119.  Ng C, Tan B, Jiang XT, et al.: Metagenomic and resistome analysis of a full-
scale municipal wastewater treatment plant in Singapore containing 
membrane bioreactors. Front Microbiol. 2019; 10: 172.  
PubMed Abstract | Publisher Full Text | Free Full Text 

120.  Makowska N, Philips A, Dabert M, et al.: Metagenomic analysis of β-
lactamase and carbapenemase genes in the wastewater resistome. Water 
Res. 2020; 170: 115277.  
PubMed Abstract | Publisher Full Text 

Page 19 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024

http://www.ncbi.nlm.nih.gov/pubmed/27558178
http://dx.doi.org/10.1128/JCM.00790-16
http://www.ncbi.nlm.nih.gov/pmc/articles/5121374
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pmc/articles/4792175
http://www.ncbi.nlm.nih.gov/pubmed/31494260
http://dx.doi.org/10.1016/j.anaerobe.2019.102093
http://www.ncbi.nlm.nih.gov/pubmed/31266463
http://dx.doi.org/10.1186/s12866-019-1520-9
http://www.ncbi.nlm.nih.gov/pmc/articles/6604184
http://www.ncbi.nlm.nih.gov/pubmed/31847943
http://dx.doi.org/10.2807/1560-7917.ES.2019.24.50.1900136
http://www.ncbi.nlm.nih.gov/pmc/articles/6918588
http://www.ncbi.nlm.nih.gov/pubmed/30099486
http://dx.doi.org/10.1093/jac/dky260
http://www.ncbi.nlm.nih.gov/pubmed/29867163
http://dx.doi.org/10.1038/s41598-018-26906-3
http://www.ncbi.nlm.nih.gov/pmc/articles/5986768
http://www.ncbi.nlm.nih.gov/pubmed/29636749
http://dx.doi.org/10.3389/fmicb.2018.00592
http://www.ncbi.nlm.nih.gov/pmc/articles/5880904
https://www.eurl-ar.eu/CustomerData/Files/Folders/19-reports-eqas-reports/431_salm-camp-gen-report-2017-final-isbnreg.pdf
http://www.ncbi.nlm.nih.gov/pubmed/30092762
http://dx.doi.org/10.1186/s12864-018-4976-3
http://www.ncbi.nlm.nih.gov/pmc/articles/6085623
http://www.ncbi.nlm.nih.gov/pubmed/29617860
http://dx.doi.org/10.1093/femspd/fty018
http://www.ncbi.nlm.nih.gov/pubmed/28321207
http://dx.doi.org/10.3389/fmicb.2017.00311
http://www.ncbi.nlm.nih.gov/pmc/articles/5337627
http://www.ncbi.nlm.nih.gov/pubmed/29068275
http://dx.doi.org/10.1099/jmm.0.000624
http://www.ncbi.nlm.nih.gov/pubmed/28389536
http://dx.doi.org/10.1128/AEM.00140-17
http://www.ncbi.nlm.nih.gov/pmc/articles/5452826
http://www.ncbi.nlm.nih.gov/pubmed/27678285
http://dx.doi.org/10.1093/jac/dkw371
https://orbit.dtu.dk/en/publications/the-proficiency-test-pilot-report-of-the-global-microbial-identif
http://www.ncbi.nlm.nih.gov/pubmed/27381390
http://dx.doi.org/10.1128/AAC.01030-16
http://www.ncbi.nlm.nih.gov/pmc/articles/4997858
http://www.ncbi.nlm.nih.gov/pubmed/26142410
http://dx.doi.org/10.1093/jac/dkv186
http://www.ncbi.nlm.nih.gov/pubmed/26519386
http://dx.doi.org/10.1128/AEM.02873-15
http://www.ncbi.nlm.nih.gov/pmc/articles/4711122
http://www.ncbi.nlm.nih.gov/pubmed/25367914
http://dx.doi.org/10.1128/AAC.03954-14
http://www.ncbi.nlm.nih.gov/pmc/articles/4291382
http://www.ncbi.nlm.nih.gov/pubmed/24501024
http://dx.doi.org/10.1128/JCM.03117-13
http://www.ncbi.nlm.nih.gov/pmc/articles/3993491
http://www.ncbi.nlm.nih.gov/pubmed/23722448
http://dx.doi.org/10.1093/jac/dkt180
http://www.ncbi.nlm.nih.gov/pmc/articles/3772739
http://www.ncbi.nlm.nih.gov/pubmed/22674929
http://dx.doi.org/10.1136/bmjopen-2012-001124
http://www.ncbi.nlm.nih.gov/pmc/articles/3378946
http://www.ncbi.nlm.nih.gov/pubmed/23233485
http://dx.doi.org/10.1093/jac/dks496
http://www.ncbi.nlm.nih.gov/pubmed/32318038
http://dx.doi.org/10.3389/fmicb.2020.00549
http://www.ncbi.nlm.nih.gov/pmc/articles/7147080
http://www.ncbi.nlm.nih.gov/pubmed/29020980
http://dx.doi.org/10.1186/s40168-017-0353-8
http://www.ncbi.nlm.nih.gov/pmc/articles/5637372
http://www.ncbi.nlm.nih.gov/pubmed/26296734
http://dx.doi.org/10.1128/AEM.00736-15
http://www.ncbi.nlm.nih.gov/pmc/articles/4592852
http://www.ncbi.nlm.nih.gov/pubmed/29069382
http://dx.doi.org/10.1093/femsre/fux053
http://www.ncbi.nlm.nih.gov/pmc/articles/5812547
http://www.ncbi.nlm.nih.gov/pubmed/23838256
http://dx.doi.org/10.1289/ehp.1206316
http://www.ncbi.nlm.nih.gov/pmc/articles/3764079
http://www.ncbi.nlm.nih.gov/pubmed/25915635
http://dx.doi.org/10.1038/nrmicro3399-c2
http://www.ncbi.nlm.nih.gov/pubmed/17277795
http://dx.doi.org/10.1038/nrmicro1614
http://www.ncbi.nlm.nih.gov/pubmed/25280222
http://dx.doi.org/10.1016/j.mib.2014.09.002
http://www.ncbi.nlm.nih.gov/pubmed/25817583
http://dx.doi.org/10.1038/nrmicro3439
http://www.ncbi.nlm.nih.gov/pubmed/30373468
http://dx.doi.org/10.1080/19490976.2018.1528822
http://www.ncbi.nlm.nih.gov/pmc/articles/6546312
http://www.ncbi.nlm.nih.gov/pubmed/31562300
http://dx.doi.org/10.1038/s41467-019-12111-x
http://www.ncbi.nlm.nih.gov/pmc/articles/6765000
http://www.ncbi.nlm.nih.gov/pubmed/30478291
http://dx.doi.org/10.1038/s41564-018-0292-6
http://www.ncbi.nlm.nih.gov/pubmed/28967888
http://dx.doi.org/10.1038/nmeth.4458
http://www.ncbi.nlm.nih.gov/pmc/articles/5903868
http://www.ncbi.nlm.nih.gov/pubmed/30736849
http://dx.doi.org/10.1186/s40168-019-0633-6
http://www.ncbi.nlm.nih.gov/pmc/articles/6368784
http://www.ncbi.nlm.nih.gov/pubmed/30669041
http://dx.doi.org/10.1016/j.watres.2018.12.069
http://www.ncbi.nlm.nih.gov/pubmed/30826606
http://dx.doi.org/10.1016/j.envpol.2019.02.057
http://www.ncbi.nlm.nih.gov/pubmed/30250051
http://dx.doi.org/10.1038/s41396-018-0277-8
http://www.ncbi.nlm.nih.gov/pmc/articles/6331547
http://www.ncbi.nlm.nih.gov/pubmed/30833934
http://dx.doi.org/10.3389/fmicb.2019.00172
http://www.ncbi.nlm.nih.gov/pmc/articles/6387931
http://www.ncbi.nlm.nih.gov/pubmed/31756613
http://dx.doi.org/10.1016/j.watres.2019.115277


121.  Buelow E, Rico A, Gaschet M, et al.: Classification of hospital and urban 
wastewater resistome and microbiota over time and their relationship to 
the eco-exposome. bioRxiv. 2019.  
Publisher Full Text 

122.  Feng J, Li B, Jiang X, et al.: Antibiotic resistome in a large-scale healthy 
human gut microbiota deciphered by metagenomic and network analyses. 
Environ Microbiol. 2018; 20(1): 355–368.  
PubMed Abstract | Publisher Full Text 

123.  Aarestrup FM, Woolhouse MEJ: Using sewage for surveillance of 
antimicrobial resistance. Science. 2020; 367(6478): 630–632.  
PubMed Abstract | Publisher Full Text 

124.  Lanza VF, Add-Baquero F, Luís Martínez J, et al.: In-depth resistome analysis by 
targeted metagenomics. Microbiome. 2018; 6(1): 11.  
PubMed Abstract | Publisher Full Text | Free Full Text 

125.  EFSA Panel on Additives and Products or Substances used in Animal Feed 
(FEEDAP);  Rychen G, Aquilina G, et al.: Guidance on the characterisation of 
microorganisms used as feed additives or as production organisms. EFSA J. 

2018; 16(3).  
PubMed Abstract | Publisher Full Text | Free Full Text 

126.  European Centre for Disease Prevention and Control: Expert opinion on whole 
genome sequencing for public health surveillance. 2016.  
Reference Source

127.  European Centre for Disease Control (ECDC), European Food Safety Authority 
(EFSA), Van Walle I, et al.: EFSA and ECDC technical report on the collection 
and analysis of whole genome sequencing data from food‐borne pathogens 
and other relevant microorganisms isolated from human, animal, food, 
feed and food/feed environmental samples in the joint ECDC‐EFSA 
molecular typing database. EFSA Support Publ. 2019; 16(5).  
Publisher Full Text 

128.  Mason A, Add-Foster D, Bradley P, et al.: Accuracy of Different Bioinformatics 
Methods in Detecting Antibiotic Resistance and Virulence Factors from 
Staphylococcus aureus. Whole-Genome Sequences. J Clin Microbiol. 2018; 
56(9).  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 20 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024

http://dx.doi.org/10.1101/697433
http://www.ncbi.nlm.nih.gov/pubmed/29194931
http://dx.doi.org/10.1111/1462-2920.14009
http://www.ncbi.nlm.nih.gov/pubmed/32029617
http://dx.doi.org/10.1126/science.aba3432
http://www.ncbi.nlm.nih.gov/pubmed/29335005
http://dx.doi.org/10.1186/s40168-017-0387-y
http://www.ncbi.nlm.nih.gov/pmc/articles/5769438
http://www.ncbi.nlm.nih.gov/pubmed/32625840
http://dx.doi.org/10.2903/j.efsa.2018.5206
http://www.ncbi.nlm.nih.gov/pmc/articles/7009341
https://www.ecdc.europa.eu/en/publications-data/expert-opinion-whole-genome-sequencing-public-health-surveillance
http://dx.doi.org/10.2903/sp.efsa.2019.EN-1337
http://www.ncbi.nlm.nih.gov/pubmed/29925638
http://dx.doi.org/10.1128/JCM.01815-17
http://www.ncbi.nlm.nih.gov/pmc/articles/6113501


Open Peer Review
Current Peer Review Status:    

Version 2

Reviewer Report 29 June 2022

https://doi.org/10.5256/f1000research.122296.r135212

© 2022 Lavezzo E et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Enrico Lavezzo   
Department of Molecular Medicine, University of Padova, Padua, Italy 
Emilio Ispano  
Department of Molecular Medicine, University of Padova, Padua, Italy 

The manuscript “A roadmap for the generation of benchmarking resources for antimicrobial 
resistance detection using next generation sequencing” by Petrillo and coauthors addresses a 
crucial issue, which is the need for a standard benchmark dataset to assess bioinformatics 
pipeline performing AMR detection/prediction. The logic followed by the authors to produce 
guidelines to build such benchmark dataset(s) is sound and clear, and so are the discussion and 
conclusion. Although the paper is well-written and holds solid evidence, and surely meets the 
need of the scientific community to have a gold standard for this topic, there are some paragraphs 
that could be adjusted for clarity and they will be listed below. In addition, it is not clear why past 
attempts to create such databases are not mentioned, since it could provide a much more 
advanced starting point than building it from scratch. I am referring to McArthur, A.G et al. (2013)1 
(which introduces also an ontology to represent AMR, could it serve the purpose addressed in the 
last bullet of section 3.2?), Zankari, et al. (2012)2. 
 
Abstract

"For this application and in general, considerable challenges remain in demonstrating 
sufficient trust to act upon the meaningful information produced from raw data…", 
meaningful but convoluted sentence, could benefit from rephrasing.

○

 
Introduction

First paragraph: A reference could be added to support the stated implementation of 
strategies using NGS to track the timeline and relationships between cases of an outbreak. 
 

○

Third paragraph: "For methods with important bioinformatics components…", what do you 
mean by important? That the bioinformatic component is crucial for the method? Or that 
the component is by itself complex and structured? 
 

○
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Third paragraph: "in such cases like this…" is a repetition. I suggest using just "In such 
cases".

○

 
Section 2.3

Second paragraph: from "Although understanding…" to "…too costly" is a sentence longer 
than needed, I suggest a full stop instead of the colon.

○

 
Section 2.4

First paragraph: "Some species also have genes that are similar at the sequence level to 
known AMR determinants that efficient pipelines must be able to distinguish.", this could 
benefit from some references pointing to such species. 
 

○

Second paragraph: The authors imply the need to cut several bacterial species from the 
database, which is nonsense in the scope of an ideally global benchmark database. I would 
rather include as much information as possible and add metadata to characterise every 
database entry to discern whether to use it or not for a certain evaluation.

○

 
Section 2.6

First paragraph: "Besides the set of reads themselves, additional information needs to be 
associated with each sample in the dataset, not for the benchmarking per se but its use for 
next benchmarking exercises", this sentence is hard to understand, please rephrase. 
 

○

Third paragraph: "and should be used as appropriate for the sake of transparency", what do 
the authors mean?

○

 
Section 3.1

Fourth paragraph: Check also Murray (2022)3 as it provides comprehensive data and 
estimations regarding many AMR cases worldwide.

○

 
Section 3.2

Third paragraph: "A great source of data are the published ring trials…". Explain what a ring 
trial is since it is also a key step for the understanding of Table 3. 
 

○

Last bullet: I am again pointing to McArthur, A.G et al. (2013)1 for such ontology.○
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Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbiology, bioinformatics, genetics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 20 Jul 2022
Mauro Petrillo 

Dear Dr Lavezzo and Dr Ispano, 
 
Thanks a lot for your valuable comments and suggestions. It is our intention to address all 
of them as part of an updated version of the published paper. 
 
Best regards, 
 
Mauro Petrillo, on behalf of the authors.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 13 May 2022

https://doi.org/10.5256/f1000research.122296.r127727

© 2022 Abramova A et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Anna Abramova   
Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden 
Marcus Wenne  

 
Page 23 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024

https://doi.org/10.5256/f1000research.122296.r127727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0493-7808


Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden 

We thank the authors for taking into consideration our comments and suggestions.
 
Is the topic of the opinion article discussed accurately in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: AMR, NGS data analysis, bioinformatics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 13 May 2022
Mauro Petrillo 

Dear Dr Abramova and Dr Wenne, 
 
We would like to thank you for your valuable comments and suggestions which definitively 
improved the quality of our manuscript. 
 
Best regards, 
 
Mauro Petrillo, on behalf of the authors.  

Competing Interests: No competing interests were disclosed.

Version 1

Reviewer Report 14 September 2021

https://doi.org/10.5256/f1000research.42277.r91069

 
Page 24 of 37

F1000Research 2022, 10:80 Last updated: 12 MAR 2024

https://doi.org/10.5256/f1000research.42277.r91069


© 2021 Abramova A et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Anna Abramova   
1 Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden 
2 Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden 
Marcus Wenne  
1 Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden 
2 Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden 

Petrillo and colleagues discuss approaches and associated challenges for establishing a 
performance-based benchmarking resource for antimicrobial resistance detection. The authors 
first describe general considerations and then provide scope-specific use cases. The paper 
represents a summary of the discussions held by experts in AMR and NGS-related fields during the 
JRC meeting. It is a relevant and important paper, and the initiative will be widely appreciated by 
the scientific community working with antimicrobial resistance. Overall, the paper is well-
written, however, it would benefit from some additional clarifications and adjustments, which are 
explained in more detail in the comments below. 
 
Introduction

Since the main focus of the paper is benchmarking, it would be beneficial to provide a short 
background on the previous benchmarking resources/initiatives in the introduction (e.g. 
Mangul et al., 20191, Sczyrba et al., 20172, etc).

○

Section 2 
Paragraph 2: “In the conclusions of the previous article...”, it is confusing which article the 
authors refer to since reference 19 (Bellman et al., 2015) provided at the end of the sentence 
does not contain the cited text.

○

General considerations
Several important questions such as which tools to include in the benchmarking, should 
they be run with optimised or default parameters (e.g. default or customised database), and 
what performance metrics are to be used for evaluation - could be added to the "General 
discussion" to clarify and benefit in the understanding of the subsequent sections.

○

Section 2.1 
This section discusses very important considerations when it comes to different sequencing 
technologies. Since sequencing technologies are constantly evolving perhaps it would be 
relevant to add some future perspectives, e.g. how to deal with emerging outperforming 
technologies. 

○

Paragraph 2: From the sentence starting with “It is important, in this case...”, it is not clear 
whether the authors mean the bias among different platforms’ outputs or outputs from the 
same platform.

○

Section 2.2 
Apart from being in silico generated or obtained from a real-life sample, the data can come 
from different types of samples. In the case of metagenomics, it would be an important 
consideration for the evaluation of bioinformatics tools (i.e. a human gut sample or a soil 
sample would be characterised by a very different complexity). 

○
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Paragraph 7: “The main issues then are: a) there is a need to demonstrate that the 
experiment met the necessary quality criteria (see section 3.3)” - section 3.3 does not 
contain any information on the quality criteria. 
 

○

Paragraph 11: “Because each approach has advantages and disadvantages, the choice must 
be carefully considered, according to the purpose of the dataset, which will be discussed in 
section 4.” - section 4 is missing.

○

Section 2.4 
This is perhaps the most important section considering the focus of the paper on AMR 
detection, however, it is very concise and does not provide a good overview of the 
challenges (e.g. what type of AMR mechanisms to include, which pathogens to consider). 
These topics are described later in section 3.1 in the example of a particular use case. 
However, it would be beneficial to outline them in the General considerations section. 
 

○

Paragraph 2: “These are specific to the purpose of the dataset (Figure 1) and will be 
discussed in section 4.1–section 4.3 below” - sections 4.1-4.3 are missing.

○

Section 2.5
To aid understanding it would be helpful to clarify genomic and phenotypic endpoint, 
perhaps by adding to the first sentence, e,g, “..a) they can detect the genetic determinants 
of AMR (genomic endpoint), and in addition b) some can predict the AMR/susceptibility of 
the bacteria in the original sample (phenotypic endpoint).”

○

Section 3.1
Paragraph 4: “3. Combinations of (1) and (2) present in at least one of the chosen lists (see 
cells in Table 2), the sequences are combined and used as the input to simulate the reads 
using the appropriate tools (see section 3.2).” - maybe the authors meant section 2.3 instead 
of 3.2. 
 

○

Paragraph 6: “The endpoint considered for this benchmark is thus genotypic (see section 
3.5),” - section 3.5 is missing. 
 

○

Paragraph 10: “When generated, the benchmark should be deployed on a dedicated (and 
sustainably maintained) platform that includes all the links to the data (see section 3.6) ” - 
section 3.6 is missing.

○

Conclusions
The authors mention in the conclusion that they identified two main use cases for this 
benchmarking resource, each necessitating its own platform: single isolates and mixed 
samples. This could be expanded upon in the General considerations section to give the 
reader an understanding of the different challenges and approaches for the two use cases. 
It is also implied, but not specifically stated, in sections 3.1 and 3.2 that they focus on single 
isolates. This only becomes clear when reading section 3.3. 
 

○

Sections 4.1-4.3 are missing.○
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Anna Abramova, Department of Infectious Diseases, University of Gothenburg, Gothenburg, 
Sweden  
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Sweden 
 
REPLY: Thanks for your comments, we have revised the whole manuscript and we hope it is now 
in line with your expectations. 
 
Introduction

Since the main focus of the paper is benchmarking, it would be beneficial to provide a 
short background on the previous benchmarking resources/initiatives in the 
introduction (e.g. Mangul et al., 20191, Sczyrba et al., 20172, etc).

○

REPLY: Thanks the suggestion. We added them in the Conclusions section. 
 
Section 2  
Paragraph 2: “In the conclusions of the previous article...”, it is confusing which article the 
authors refer to since reference 19 (Bellman et al., 2015) provided at the end of the 
sentence does not contain the cited text. 
REPLY: Thanks for spotting this error, which has been corrected. 
 
General considerations

Several important questions such as which tools to include in the benchmarking, 
should they be run with optimised or default parameters (e.g. default or customised 
database), and what performance metrics are to be used for evaluation - could be 
added to the "General discussion" to clarify and benefit in the understanding of the 
subsequent sections.

○

REPLY: Section 3.1 was substantially rewritten to provide more information on the performance-
based evaluation. Concretely, both tools and their parameters, should be open to the preferences 
and requirements of the end users. Certain groups might have a preference for certain tools 
because it is easier to implement for them, they have developed the tool themselves in-house, it’s 
freely available as open-source solutions or alternatively commercially available but with full 
customer support etc. As long as said tools are demonstrated to provide a certain minimum 
performance, they can be used since the benchmarking should focus on performance rather than 
enforcing a single pipeline to be used by all (which at any rate, would be unlikely, given the 
plethora of different sequencing technologies, platforms, and chemistries). The same logic applies 
to settings, for which certain groups may wish to extensively finetune certain settings but others 
may prefer to keep them at defaults. With respect to the actual performance metrics to be used, 
more information was provided in the revised manuscript but we prefer redirecting to reference 
publications such as Kozyreva et al. (https://doi.org/10.1128/JCM.00361-17) for a more detailed 
explanation and example of how these could be implemented, since providing all that 
information would substantially enlarge the size of this paper. 
 
Section 2.1

This section discusses very important considerations when it comes to different 
sequencing technologies. Since sequencing technologies are constantly evolving 
perhaps it would be relevant to add some future perspectives, e.g. how to deal with 
emerging outperforming technologies.

○
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REPLY: A sentence has been added to the end of the section indicating that implementation of 
new benchmark datasets should be prioritized if new and better technologies emerge.

Paragraph 2: From the sentence starting with “It is important, in this case...”, it is not 
clear whether the authors mean the bias among different platforms’ outputs or 
outputs from the same platform.

○

REPLY: Text has been modified to try to clarify that this means bias among the different 
platforms. 
 
Section 2.2

Apart from being in silico generated or obtained from a real-life sample, the data can 
come from different types of samples. In the case of metagenomics, it would be an 
important consideration for the evaluation of bioinformatics tools (i.e. a human gut 
sample or a soil sample would be characterised by a very different complexity).

○

REPLY: We have addressed this point in section 3, which was revised.
Paragraph 7: “The main issues then are: a) there is a need to demonstrate that the 
experiment met the necessary quality criteria (see section 3.3)” - section 3.3 does not 
contain any information on the quality criteria.

○

REPLY: Should be 2.3 Text has been modified accordingly. 
 

Paragraph 11: “Because each approach has advantages and disadvantages, the 
choice must be carefully considered, according to the purpose of the dataset, which 
will be discussed in section 4.” - section 4 is missing.

○

REPLY: Should be 3. Text has been modified accordingly. 
 
Section 2.4

This is perhaps the most important section considering the focus of the paper on 
AMR detection, however, it is very concise and does not provide a good overview of 
the challenges (e.g. what type of AMR mechanisms to include, which pathogens to 
consider). These topics are described later in section 3.1 in the example of a particular 
use case. However, it would be beneficial to outline them in the General 
considerations section.

○

REPLY: The “General considerations” section has been expanded accordingly. 
 

Paragraph 2: “These are specific to the purpose of the dataset (Figure 1) and will be 
discussed in section 4.1–section 4.3 below” - sections 4.1-4.3 are missing.

○

REPLY: Should be 3.1-3.3. Text has been modified accordingly. 
 
 
Section 2.5

To aid understanding it would be helpful to clarify genomic and phenotypic endpoint, 
perhaps by adding to the first sentence, e,g, “..a) they can detect the genetic 
determinants of AMR (genomic endpoint), and in addition b) some can predict the 
AMR/susceptibility of the bacteria in the original sample (phenotypic endpoint).”

○

REPLY: Added as suggested. 
 
Section 3.1

Paragraph 4: “3. Combinations of (1) and (2) present in at least one of the chosen lists ○
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(see cells in Table 2), the sequences are combined and used as the input to simulate 
the reads using the appropriate tools (see section 3.2).” - maybe the authors meant 
section 2.3 instead of 3.2.

REPLY: Should be 2.3, text has been modified.
Paragraph 6: “The endpoint considered for this benchmark is thus genotypic (see 
section 3.5),” - section 3.5 is missing.

○

REPLY: Should be 2.5- Text has been modified accordingly
Paragraph 10: “When generated, the benchmark should be deployed on a dedicated 
(and sustainably maintained) platform that includes all the links to the data (see 
section 3.6) ” - section 3.6 is missing.

○

REPLY: Should be 2.6. Text has been modified accordingly 
 
Conclusions

The authors mention in the conclusion that they identified two main use cases for this 
benchmarking resource, each necessitating its own platform: single isolates and 
mixed samples. This could be expanded upon in the General considerations section 
to give the reader an understanding of the different challenges and approaches for 
the two use cases. It is also implied, but not specifically stated, in sections 3.1 and 3.2 
that they focus on single isolates. This only becomes clear when reading section 3.3.

○

REPLY: A short introduction in section 3 has been added. The “General considerations” section has 
been expanded accordingly, too. 
 

Sections 4.1-4.3 are missing.○

REPLY: Should be section 3. Text has been modified accordingly.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 21 May 2021

https://doi.org/10.5256/f1000research.42277.r84352

© 2021 Hendriksen R. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Rene Hendriksen  
1 National Food Institute, Technical University of Denmark, Bygning, Lyngby, Denmark 
2 National Food Institute, Technical University of Denmark, Bygning, Lyngby, Denmark 

This manuscript describes a road map how to set up and conduct benchmarking to assess 
bioinformatics pipelines to detect AMR genes in three levels. 
 
Overall, comments: 
The manuscript is well-written but I find it in several paragraphs hard to comprehend the 
sentences as the authors contradict themselves. This needs to be address as the topic is important 
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but it needs to be all clear. 
I suggest to focus the paper on single isolate genomes rather than but this and metagenomics. It 
is really two separate technologies and will need different approaches. It is trying to explain all but 
fails really to in depth address metagenomics. 
 
Specific comments:

Page 4 1st  paragraph: Describe other epidemiological traits alongside with the timeline and 
relatedness by merging the paragraphs “….such as virulence, resistance to antibiotics, 
typing and other adaptive traits… to the same paragraph. I was missing the characterization 
of AMR genes in the initial lines as this is the focus and title of the paper. 
 

○

Page 4 introduction: I miss an explanation about “complex microbial communities”. I know 
this is metagenomics but the term needs to be introduced. 
 

○

Page 4 introduction: “…. antimicrobial resistance (AMR) genetic determinants from NGS 
data…. This needs to be clarified if this include acquired antimicrobial resistance genes 
AND/ OR chromosomal point mutations. This is not clear what the approach includes. 
 

○

 Page 5 2nd bullet: Clarify what is mean by resistome. I suggest to make it clear that this 
bullet deals with metagenomics. 
 

○

Page 5 last paragraph: “Bioinformatics pipelines are thus usually designed to handle the 
output of a specific platform, often in a certain configuration”. This is true but also the 
achilles heel of the further description where this is being contradicted. 
 

○

Fig 1: I miss the word “concordance to phenotype” as well as curation for scope 1. 
 

○

Page 6 2nd paragraph: “in practice, a prioritisation exercise should be made based on the 
capacity building efforts in testing laboratories”. Clarify why this is needed! 
 

○

Fig 2: The data could easily be explained in text – omit fig 2 or reference already published 
similar figures. 
 

○

Page 6 4th paragraph: I don’t understand the concept. It was earlier explained that 
“Bioinformatics pipelines are thus usually designed to handle the output of a specific 
platform, often in a certain configuration” so, why compare the output of a certain pipeline 
from data generated from different platforms knowing that the result for certain platforms 
will be biased due to the low comparability of a certain pipeline. 
 

○

Page 6 5th paragraph: “The FASTQ format is a standard format in this context, which should 
be used in the benchmark resources; many tools exist to convert the raw data output files 
into this format in case of different platform outputs (see, for example,39,40) although, it 
should be noted, different tools may produce different results and this step should be 
carefully planned.” I find this a source for bring in bias to the benchmarking. I find it hard to 
see how one can trust the analysis when bringing in variation which might not even be 
controlled. 
 

○

Page 7 1st, 2nd, 7th paragraph: I did it contradicting that its phrased that “ Although the ○
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disadvantage of simulating in silico data is obvious (it is not ‘real’), there are some 
substantial advantages: it is a lot cheaper than performing sequencing runs, a lot faster, 
and can be applied to any genome previously sequenced.” and “However, a major drawback 
is that simulating variation the way nature evolves is very challenging – genetic variation 
happens in places in the genome where it is hardest to find.” And “although this requires 
strict annotation of the experiment; c) it will not be possible (besides rare exceptions) to 
build datasets for the different platforms using the same initial samples.” First of all, its not 
all that can prepare simulated datasets and secondly, its correct that it will never mimic 
nature, Thus, I don’t see why this is so heavily recommended. 
 
Page 9 1st paragraph: I miss N50, no of contigs etc.. to be mentioned as QC metrics. 
 

○

Page 9 2nd paragraph: Not easy to understand. 
 

○

Page 9 2.4 1st paragraph: “a very pragmatic approach could be the generation of random 
DNA sequences, to which particular sequences of interest are added (i.e. fragments of AMR 
genes). However, there is sufficient evidence that the genomic background of the bacteria 
(i.e. the “non-AMR related” sequences) can have a profound influence on the performance of 
the pipelines”. Contradiction – see Page 7 1st, 2nd , 7th paragraph. 
 

○

Page 9 6th paragraph: define “phenotypic endpoint”. 
 

○

Page 9 6th paragraph: “Studies that evaluated AMR genotype to phenotype relationships 
have indicated that despite generally high correspondence, this can vary greatly between 
pathogens / case studies, and even for different antimicrobial agents within the same 
species 57,58.” I need to be further elaborated – what do one trust the phenotypic data or 
detected genes. 
 

○

Page 9 intro to bullets: define “genomic endpoint”. 
 

○

Page 9 section 2.6: Agree that metadata is needed but it needs to be explained that its not 
needed for the benchmarking itself but for others to use the dataset for future exercises. 
 

○

Page 10 1st paragraph of section 3.1: explain what is meant by “agreed minimum 
standards”- what performance metrics. 
 

○

Page 10 3rd paragraph of section 3.1: I find it contradicting to Page 7 1st, 2nd, 7th paragraph. 
 

○

Page 10: WHO CIA has been updated – provide ref. 
 

○

Page 10: The decision has been updated in 2021 – provide ref. 
 

○

Page 13: Tabel 3 greatly lack a million PT/ EQA reports from EURLs e.g. https://www.eurl-
ar.eu/reports.aspx https://antimicrobialresistance.dk/eqas.aspx 
 

○

Page 14 section 3.3: I would omit this part as it add more confusion to bring in also 
metagenomics to the concept – a completely different approach with complex samples. Past 
studies has also show that benchmarking metagenomics is not a trivial discipline.

○
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Is the topic of the opinion article discussed accurately in the context of the current 
literature?
Partly

Are all factual statements correct and adequately supported by citations?
Partly

Are arguments sufficiently supported by evidence from the published literature?
No

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbiologist focusing on NGS and EQA/ benchmarking

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 16 Sep 2021
Mauro Petrillo 

Dear Dr Hendriksen, 
 
Thanks a lot for your valuable comments and suggestions that you have provided in the 
report. 
 
We will address all of them, together with those of other reviewers, in order to provide a 
fully revised version of the manuscript. 
 
Best regards, 
 
Mauro Petrillo, on behalf of the authors.  

Competing Interests: No competing interests were disclosed.
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Replies to Rene Hendriksen, National Food Institute, Technical University of Denmark, Bygning, 
Lyngby, Denmark. 
Overall, comments 
The manuscript is well-written but I find it in several paragraphs hard to comprehend the 
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sentences as the authors contradict themselves. This needs to be address as the topic is 
important but it needs to be all clear. 
I suggest to focus the paper on single isolate genomes rather than but this and 
metagenomics. It is really two separate technologies and will need different approaches. It 
is trying to explain all but fails really to in depth address metagenomics. 
REPLY: Thanks for your comments, we have revised the whole manuscript and we hope it is now 
in line with your expectations. 
 
Specific comments

Page 4 1st  paragraph: Describe other epidemiological traits alongside with the 
timeline and relatedness by merging the paragraphs “….such as virulence, resistance 
to antibiotics, typing and other adaptive traits… to the same paragraph. I was missing 
the characterization of AMR genes in the initial lines as this is the focus and title of 
the paper.

○

REPLY: Paragraphs 1 and 2 have been merged, and reference to the use of this data for inferring 
AMR has been moved to early in paragraph 1 as suggested.

Page 4 introduction: I miss an explanation about “complex microbial communities”. I 
know this is metagenomics but the term needs to be introduced.

○

REPLY: As requested, bullets on this page have been rewritten to introduce the “metagenome” 
terminology

Page 4 introduction: “…. antimicrobial resistance (AMR) genetic determinants from 
NGS data…. This needs to be clarified if this include acquired antimicrobial resistance 
genes AND/ OR chromosomal point mutations. This is not clear what the approach 
includes.

○

REPLY: The bullets on page 4 have been modified to indicate that phenotype prediction relies on 
detection of both acquired ARGs and point mutations. We felt that this was a better place to 
define the types of genetic determinants associated with AMR 
 

Page 5 2nd bullet: Clarify what is mean by resistome. I suggest to make it clear that 
this bullet deals with metagenomics.

○

REPLY: This bullet has been rewritten to address clarity.
Page 5 last paragraph: “Bioinformatics pipelines are thus usually designed to handle 
the output of a specific platform, often in a certain configuration”. This is true but also 
the achilles heel of the further description where this is being contradicted.

○

REPLY: We have rewritten section 3.1 to make clearer that validation of different pipelines should 
be performance-based, i.e. focus on their performance rather than enforcing a single pipeline to 
be adopted by the community. Different sequencing technologies exist, but also for the same 
technology there exist differences in instruments and chemistries that potentially require 
specifically adopted pipelines to accommodate specific configurations. By building community 
benchmarking datasets for which the ground truth is well-established for those configurations, 
prioritizing dominant technologies, it becomes possible that different pipelines are used by 
different groups (even when both groups otherwise use exactly the same configuration), as long 
as those pipelines meet minimum agreed upon acceptance values for their performance.

Fig 1: I miss the word “concordance to phenotype” as well as curation for scope 1.○

REPLY: Sorry, we did not understand this point. Do you mean these concepts should be added to 
Figure 1? Or that what is reported in the figure 1 is inconsistent with what mentioned in the text?
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Page 6 2nd paragraph: “in practice, a prioritisation exercise should be made based on 
the capacity building efforts in testing laboratories”. Clarify why this is needed!

○

REPLY: This has been reworded to indicate that it may be necessary if resource limitations are an 
issue.

Fig 2: The data could easily be explained in text – omit fig 2 or reference already 
published similar figures.

○

REPLY: We added additional text to justify the presence of Figure 2.
Page 6 4th paragraph: I don’t understand the concept. It was earlier explained that 
“Bioinformatics pipelines are thus usually designed to handle the output of a specific 
platform, often in a certain configuration” so, why compare the output of a certain 
pipeline from data generated from different platforms knowing that the result for 
certain platforms will be biased due to the low comparability of a certain pipeline.

○

REPLY: We provide here a clarification. Even though pipelines can be drastically different, e.g. 
made for different sequencing technologies or use completely different algorithmic approaches 
for a certain configuration (e.g. assembly-based or read-mapping based strategies), their final 
aim in the context of this manuscript considers the correct detection and identification of AMR 
determinants (whether SNPs, genes or more complex features), as quantified by validating their 
performance. Consequently, it is not the output of those pipelines themselves that will be directly 
compared, but rather the ability of said pipelines to correctly detect and identify AMR 
determinants. Whatever sequencing technology or bioinformatics methodology is applied, if a 
pipeline designed to detect AMR genes cannot properly detect and identify those genes, then said 
pipeline cannot be considered validated for AMR gene detection in a clinical or regulatory 
application. Contrarily, if said pipeline can correctly detect and identify those genes, then it could 
be applied in such contexts.

Page 6 5th paragraph: “The FASTQ format is a standard format in this context, which 
should be used in the benchmark resources; many tools exist to convert the raw data 
output files into this format in case of different platform outputs (see, for 
example,39,40) although, it should be noted, different tools may produce different 
results and this step should be carefully planned.” I find this a source for bring in bias 
to the benchmarking. I find it hard to see how one can trust the analysis when 
bringing in variation which might not even be controlled.

○

REPLY: This is exactly what the generation of community benchmark datasets circumvents by 
providing reference datasets for which the ground truth is well-established. By starting from such 
samples, whether using reference genomes with known AMR determinants for which reads are 
simulated with error profiles modelled to mimic specific sequencing technologies, or alternatively 
using real samples where certain AMR determinants have been shown to be present/absent with 
traditional methods (e.g. PCR and/or Sanger sequencing) subjected to sequencing by specific 
sequencing technologies, the resulting datasets can be analyzed with pipelines for which it is 
known which AMR determinants should be detected. If such an approach uncovers that certain 
variation and biases specific to certain sequencing technologies and/or configurations cannot be 
controlled for bioinformatically and negatively affect pipeline performance leading to missed 
detection (or alternatively false positive detections), said pipeline cannot be considered validated 
for AMR characterization in a clinical or regulatory application. We hope this clarifies.

Page 7 1st, 2nd, 7th paragraph: I did it contradicting that its phrased that “ Although 
the disadvantage of simulating in silico data is obvious (it is not ‘real’), there are some 
substantial advantages: it is a lot cheaper than performing sequencing runs, a lot 
faster, and can be applied to any genome previously sequenced.” and “However, a 

○
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major drawback is that simulating variation the way nature evolves is very 
challenging – genetic variation happens in places in the genome where it is hardest 
to find.” And “although this requires strict annotation of the experiment; c) it will not 
be possible (besides rare exceptions) to build datasets for the different platforms 
using the same initial samples.” First of all, its not all that can prepare simulated 
datasets and secondly, its correct that it will never mimic nature, Thus, I don’t see why 
this is so heavily recommended.

REPLY: We have rewritten section 3.1 to take the suggestion of the reviewer into account by 
rendering the second approach for generating benchmark data, i.e. sequencing of real samples 
on the condition that their AMR determinants are well-established by other approaches (such as 
conventional PCR and/or Sanger sequencing), more prominent.

Page 9 1st paragraph: I miss N50, no of contigs etc.. to be mentioned as QC metrics.○

REPLY: We have now included quality of the assembly as an example of an important QC metric.
Page 9 2nd paragraph: Not easy to understand.○

REPLY: This paragraph has been rewritten for clarity.
Page 9 2.4 1st paragraph: “a very pragmatic approach could be the generation of 
random DNA sequences, to which particular sequences of interest are added (i.e. 
fragments of AMR genes). However, there is sufficient evidence that the genomic 
background of the bacteria (i.e. the “non-AMR related” sequences) can have a 
profound influence on the performance of the pipelines”. Contradiction – see Page 7 
1st, 2nd , 7th paragraph.

○

REPLY: Thanks for spotting this contradiction. It has been clarified by rephrasing.
 page 9 6th paragraph: define “phenotypic endpoint”.○

REPLY: This has been defined in the first paragraph of section 2.5
Page 9 6th paragraph: “Studies that evaluated AMR genotype to phenotype 
relationships have indicated that despite generally high correspondence, this can 
vary greatly between pathogens / case studies, and even for different antimicrobial 
agents within the same species 57,58.” I need to be further elaborated – what do one 
trust the phenotypic data or detected genes.

○

REPLY: The subsequent paragraphs explain that focusing on a genomic endpoint has advantages. 
The name of the section has been change, as its aim is not to assess what is better between the 
two described endpoints.

Page 9 intro to bullets: define “genomic endpoint”.○

REPLY: This has been defined in the first paragraph of section 2.5
Page 9 section 2.6: Agree that metadata is needed but it needs to be explained that 
its not needed for the benchmarking itself but for others to use the dataset for future 
exercises.

○

REPLY: Added a sentence to clarify this.
Page 10 1st paragraph of section 3.1: explain what is meant by “agreed minimum 
standards”- what performance metrics.

○

REPLY: We have substantially revised section 3.1 to render the “agreed minimum standards” 
clearer.

Page 10 3rd paragraph of section 3.1: I find it contradicting to Page 7 1st, 2nd, 7th 
paragraph.

○

Page 10: WHO CIA has been updated – provide ref. 
REPLY: the WHO web  page states the a new update will be issued in 2022. WHO release: 

○
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2020 annual review of the clinical and preclinical antibacterial pipelines evaluates the 
potential of antibacterial candidates 
(https://www.who.int/publications/i/item/9789240021303)
Page 10: The decision has been updated in 2021 – provide ref. 
REPLY: changed according to request.

○

Page 13: Tabel 3 greatly lack a million PT/ EQA reports from EURLs e.g. 
https://www.eurl-ar.eu/reports.aspx https://antimicrobialresistance.dk/eqas.aspx

○

REPLY: We agree that a lot of PT/ EQA reports from EURLs exist. However, Table 3 is proposed as 
“a non-exhaustive list of recent references to be used as a starting point” and, among them, 
reference 85 is a report from the EURL-AR. Anyway, we modified the text to highlight the relevance 
of these reports.  
 
Page 14 section 3.3: I would omit this part as it add more confusion to bring in also 
metagenomics to the concept – a completely different approach with complex samples. Past 
studies has also show that benchmarking metagenomics is not a trivial discipline. 
REPLY: We did not omit this part as we believe it is linked to the resistome concept that we 
addressed, thanks to your suggestions.  

Competing Interests: No competing interests were disclosed.
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