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Abstract

Background: The seroprevalence of SARS-CoV-2 infection in the French population was estimated with a representative,
repeated cross-sectional survey based on residual sera from routine blood testing. These data contained no information on infection
or vaccination status, thus limiting the ability to detail changes observed in the immunity level of the population over time.

Objective: Our aim is to predict the infected or vaccinated status of individuals in the French serosurveillance survey based
only on the results of serological assays. Reference data on longitudinal serological profiles of seronegative, infected, and
vaccinated individuals from another French cohort were used to build the predictive model.

Methods: A model of individual vaccination or infection status with respect to SARS-CoV-2 obtained from a machine learning
procedure was proposed based on 3 complementary serological assays. This model was applied to the French nationwide
serosurveillance survey from March 2020 to March 2022 to estimate the proportions of the population that were negative, infected,
vaccinated, or infected and vaccinated.

Results: From February 2021 to March 2022, the estimated percentage of infected and unvaccinated individuals in France
increased from 7.5% to 16.8%. During this period, the estimated percentage increased from 3.6% to 45.2% for vaccinated and
uninfected individuals and from 2.1% to 29.1% for vaccinated and infected individuals. The decrease in the seronegative population
can be largely attributed to vaccination.

Conclusions: Combining results from the serosurveillance survey with more complete data from another longitudinal cohort
completes the information retrieved from serosurveillance while keeping its protocol simple and easy to implement.
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Introduction

In the ongoing global effort to contain the SARS-CoV-2
pandemic, population-wide serological surveys are
recommended for disease surveillance and policymaking [1].
Serological assays directly measure the antibody response to
SARS-CoV-2 resulting from viral infection or vaccination.
Monitoring seroprevalence is of paramount interest to
complement case-based surveillance that does not capture
subclinical cases or people using self-tests and to evaluate the
effectiveness of the vaccination strategy over time. Therefore,
the World Health Organization’s UNITY initiative promotes
serological surveys by providing guidelines to standardize
worldwide serological studies.

Despite the availability of well-known methods as well as
guidelines, implementation of serological surveys remains
challenging in terms of the resources and logistic means needed
to obtain samples [2]. Collecting residual sera from routine
clinical blood testing represents an easy and inexpensive
solution. This strategy was chosen for the nationwide
SARS-CoV-2 serosurvey in France (SERPICO) [3]. This survey,
conducted by the national health agency Santé publique France
and the National Reference Centre for Respiratory Infections
Viruses of the Institut Pasteur, aimed to estimate the
seroprevalence of anti–SARS-CoV-2 antibodies in the French
population over time according to gender, age, and region. The
humoral immune status of individuals was determined by 3
complementary serological assays: 2 luciferase-linked
immunosorbent assays (LuLISAs) detecting the nucleocapsid
(LN) and the spike (LS) proteins of SARS-CoV-2 and a
pseudoneutralization assay (PNT). In total, 8 collection periods
between March 2020 and March 2022 monitored the evolution
of seroprevalence in the French general population.

Substantial differences were reported in the effectiveness and
duration of natural versus vaccine-conferred or hybrid immunity
against SARS-CoV-2 reinfection [4,5]. In particular, prior
infection after 1 dose of vaccine elicited antispike IgG antibody
responses with higher peak levels or longer half-lives than 1 or
2 vaccinations in seronegative individuals [6]. We therefore
aimed to reconstruct the proportion of infected versus vaccinated
or infected and vaccinated individuals over time as it may carry
meaningful lessons and potential applications for future
vaccine-preventable disease pandemics.

Although the SERPICO serosurvey lacked data documenting
the status of the sampled individuals with respect to previous
SARS-CoV-2 infection or vaccination, the detailed serological
data presented here could allow novel approaches to monitor
the SARS-CoV-2 seroprevalence of the French population with
regard to infection or vaccination.

In this study, we propose a model derived from a machine
learning procedure to predict individuals’ immune status with

respect to SARS-CoV-2 infection and vaccination based on
results from 3 serological assays. We applied this predictive
model to the SERPICO serosurvey to characterize immune
status resulting from natural infection and vaccination for the
French population between 2020 and 2022.

Methods

Serological Assays
The National Reference Centre for Respiratory Infections
Viruses and the Diagnostic Test Innovation and Development
core facility of the Institut Pasteur developed 3 serological
assays: 2 LuLISAs detecting the LN and LS proteins of
SARS-CoV-2 and a PNT [7]. These serological results are
considered explanatory variables in the predictive models. They
were expressed as log10 of their original value.

Data
This study used 3 data sets (Table 1). The CURIE-O-SA [7]
and prepandemic [3,7] data sets were used to build and validate
the model, and the SERPICO [3] data set was used for
application of the model.

The CURIE-O-SA study is a large cohort of 1917 workers in a
hospital and research center specialized in oncology. Of the
4394 individuals included in this data set, 77% (n=3595) were
men and 23% (n=899) were women. The median age was 38
(IQR 19-82) years with 94% (n=4130) of participants between
20 and 59 years of age. The CURIE-O-SA serological assay
results were available at different sampling times (“individual
date”) with a mean number of times per participant equal to 2.5
(SD 1.2) and 73% (n=3208) of individuals with 1, 2, or 3
sampling times. Information on SARS-CoV-2 history (symptoms
and date of positive reverse transcription polymerase chain
reaction [RT-PCR] test, if any) and on SARS-CoV-2 vaccination
(number of injections and dates) was collected. The uninfected
status (0) was set if the following 3 conditions were met: no
positive PCR test, no declaration of ageusia or anosmia, and a
log10LN value below 4.60. Individuals with log10LN>4.60 and
no positive PCR test were considered potential subclinical cases
and were excluded. The infected status (1) was set for
individuals with a positive RT-PCR result history only;
individuals reporting symptoms for SARS-CoV-2 with no
positive RT-PCR result were excluded. The vaccination status
(0=unvaccinated, 1=1 injection, 2=2 injections) was defined
while taking into account a delay of 15 days after vaccination
(immunity onset) and no more than 6 months after the last
injection (immunity waning). Of the 4394 results, 80.4%
(n=3532) of results were negative (uninfected and unvaccinated),
5.2% (n=231) were infected and unvaccinated, 10.9% (n=477)
were vaccinated twice, 1.9% (n=82) were vaccinated once, and
1.6% (n=72) were infected and vaccinated.
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The prepandemic results came from healthy donors from a blood
bank before 2019 and were expected to be predicted negative
(uninfected and unvaccinated) by the model. In this data set, of
the 233 individuals, 32.2% (n=75) were men and 67.8% (n=158)
were women with a median age of 44 (IQR 18-81) years.

The SERPICO data were considered application data for the
model. The SERPICO survey monitored the evolution of
seroprevalence of anti–SARS-CoV-2 antibodies in the French
population (mainland area) from March 2020 to March 2022
with 8 periods of sampling. Results for the 3 serological assays
(LN, LS, and PNT) were available for 23,886 samples.

Table 1. Description of the 3 data sets under study.

VariablesNumber of resultsUseDescriptionData set

LSa, LNb, PNTc values; gender;
age; SARS-CoV-2 infection status
(0=uninfected, 1= infected); SARS-
CoV-2 vaccination status (0=unvac-
cinated, 1=1 injection, 2=2 injec-
tions)

4394 individuals ×
dates

Reference for SARS-CoV-2 status;
reference for SARS-CoV-2 vaccina-
tion status

Cohort study among health
workers; April 2020-Novem-
ber 2021

CURIE-O-SA [7]
(n=4394)

LS, LN, PNT values; gender; age233 individualsControl for uninfected SARS-CoV-
2 status; control for unvaccinated
SARS-CoV-2 status

Blood donors; 2014-2018Prepandemic [3,7]
(n=233)

LS, LN, PNT values; gender; age;
region

23,886 individuals ×
dates

ApplicationTransversal nationwide sur-
vey, residual sera; March
2020-March 2022

SERPICO [3]
(n=23,886)

aLN: nucleocapsid.
bLS: spike protein.
cPNT: pseudoneutralization assay.

Machine Learning Procedure
The model was built using a 4-step procedure involving
calibration, validation, testing, and application (Figure 1). It
aimed to predict the SARS-CoV-2 status at the individual level
from 3 serological assays (LS, LN, and PNT) and 2 covariables
(age and gender). The SARS-CoV-2 status was defined as a
variable with 5 modalities: uninfected-unvaccinated (NEG),
vaccinated with 1 dose (VAC1), vaccinated with 2 doses
(VAC2), infected-unvaccinated (INF), and infected-vaccinated
regardless of the number of doses (INF.VAC). A machine
learning procedure was applied to challenge several
classification models [8]. The model with the best predictive
performance was selected from a cross-validation procedure on
the first data set (CURIE-O-SA) then validated on an external
data set (prepandemic). Finally, the selected model was applied
to the French nationwide serosurveillance survey (SERPICO)
to infer the proportions of the 5 SARS-CoV-2 statuses.

More precisely, 12 parametric and nonparametric classification
models from 5 main statistical families were assessed within a
machine-learning procedure. The models came from the
following families: (1) generalized linear models (standard
multinomial regression, penalized generalized linear model),
(2) Bayesian models (naive Bayesian classification), (3) factor

analysis models (discriminant analysis, mixture discriminant
analysis, regularized discriminant analysis, kernel partial least
squares discriminant analysis), (4) decision tree models (bagged
classification and regression tree, Quinlan’s C5.0 algorithm),
and (5) nonparametric classification models (K nearest
neighbors, support vector machine, neural network) [9]. To
select the best predictive model and avoid overfitting, a repeated
(200 times) 2-fold cross-validation was applied. To ensure the
independence of the “individual x date” units, calibration data
were randomly selected so that there was only 1 sample per
individual involved in the CURIE-O-SA cohort; the remaining
data were used for validation. The model parameters were
optimized by means of a 10-fold cross-validation procedure on
the calibration data. Percentages of well-classified samples for
each modality of the status were calculated on the validation
data. The best model was the one that best predicted the status
modalities on average. Using the mean predictive performance
of the 5 statuses to select the best model (rather than the overall
prediction) can be considered oversampling of the rare
modalities [10]. Repeated bootstrap simulations (50 times) were
used to obtain 95% CIs. The overall procedure was implemented
in R software (version 4.1.2, R Foundation for Statistical
Computing) [11] by means of the “caret” package (version
6.0-90) [12].
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Figure 1. Sketch graph of the 3-step model-building procedure (calibration, validation, and testing) and the application step. Regardless of the data set
(ie, CURIE-O-SA, prepandemic, or SERPICO), the X explanatory data contained the log10 values of the 3 serological assays (log10LN, log10LS, and
log10PNT) and the Y outcome data, with the SARS-CoV-2 status being known (CURIE-O-SA, prepandemic) or unknown (SERPICO).

Ethical Considerations
The study was based on a secondary use of pseudonymized data
collected from health professionals and already published [3,7].
According to French law, such studies are not required to receive
ethics committee approval.

Results

Descriptive Statistics
The CURIE-O-SA data set used to build and validate the
predictive model is illustrated in Figure 2. The serological LN
results differentiated INF and to a lesser extent INF.VAC
individuals from the others. The serological results targeting
the SARS-CoV-2 LS separated the NEG individuals from the

others. INF individuals developed anti-LS and anti-LN protein
immunoglobulins, while VAC1 and VAC2 individuals
developed anti-LS immunoglobulins only. This difference in
immunization between infected (and unvaccinated) and
vaccinated individuals was expected in a cohort where VAC1
and VAC2 individuals were vaccinated by vaccines targeting
the LS only. The PNT results separated the INF.VAC individuals
from the others as INF.VAC individuals presented a higher
response to the PNT assay than did VAC1 and VAC2
individuals.

The prepandemic data set used for model validation consisted
of 223 negative sera with the following average values for the
serological assays (log10 values): 3.16 (SD 0.30) for LN, 3.16
(SD 0.20) for LS, and 5.07 (SD 0.11) for PNT.
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Figure 2. Density estimation of the log10 values of the serological assays (LN, LS, and PNT) according to their known SARS-CoV-2 status in the
CURIE-O-SA cohort. INF: infected-unvaccinated; INF.VAC: infected-vaccinated regardless of the number of doses; LN: nucleocapsid; LS: spike
protein; NEG: uninfected-unvaccinated; PNT: pseudoneutralization assay; VAC1: vaccinated with 1 dose; VAC2: vaccinated with 2 doses.

Model
The percentages of well-classified results for each status and
for all the models under study were calculated (Table 2).

The selected model was the mixture discriminant analysis with
the best average prediction performance (mean 69.9%, SD
0.5%). More precisely, 98.4% (SD 0.2%) of the NEG status
was well-predicted, as well as 40.6% (SD 6.9%) of the VAC1,
87.5% (SD 3.1%) of the VAC2, 42.6% (SD 11.3%) of the
INF.VAC, and 78.9% (SD 3.8%) of the INF statuses. Best
performances were obtained for the modalities with the largest
numbers of “individual × date” units (NEG, VAC2, and INF).
The VAC1 individuals were usually (60%) incorrectly predicted
as VAC2; the error in the prediction did not depend on age or
gender. The INF.VAC individuals were usually (84.4%)
incorrectly predicted as VAC2; the error in the prediction did

not depend on age and gender. As expected, this model predicted
99.5% of the negative prepandemic sera (Figure 3).

The model was applied to the prepandemic data (n=223). It
predicted 222 results as negative and 1 as VAC1. This confirms
the ability of the model to predict infection-free individuals, as
99.5% of the results were correctly predicted as NEG. This
performance is in accordance with that calculated by means of
cross-validation (98.4%). However, this performance is expected
in that the model has many NEG values in the calibration data
set (3532/4394; 80.4%) and is tested on expected NEG results.
The only result not correctly predicted was predicted to be
VAC1 with values log10LN=3.09, log10LS=4.44, and
log10PNT=5.04. This individual had higher LS values than
expected for NEG individuals (log10LN=3.28, log10LS=3.05,
and log10PNT=4.78 for average NEG individuals in the
CURIE-O-SA data set).
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Table 2. Predictive performances of different models obtained by means of a repeated (200 times) 2-fold cross-validation using the CURIE-O-SA
cohort (n=4394 individual × date units from April 2020-November 2021).

Predictive performance (%), mean (SD)Model

AveragefINFe (n=231)INF.VACd (n=72)VAC2c (n=477)VAC1b (n=82)NEGa (n=3532)

59 (41.8)68.1 (2.9)29.1 (9.8)95.4 (1.5)3.4 (4.7)99.1 (0.2)Multinomial regression

57.8 (43.1)68 (2.8)24.8 (12.6)95.4 (1.3)1.9 (3.6)99.1 (0.2)Penalized generalized linear model

65.6 (38.3)83.8 (1.8)47.8 (8.7)91.3 (1.9)6.7 (4.7)98.5 (0.2)Naive Bayesian classification

66.8 (27.8)77.9 (1.8)45 (6.1)81.1 (4)31.1 (5.8)98.7 (0.1)Linear discriminant analysis

68.4 (32.2)82.5 (2.8)46.9 (6.3)91.5 (3)22.9 (11.3)98.3 (0.2)Regularized discriminant analysis

69.6 (26.5)78.9 (3.8)42.6 (11.3)87.5 (3.1)40.6 (6.9)98.4 (0.2)Mixture discriminant analysisg

46.3 (47.7)41.7 (3.1)0 (0)90.3 (1)0 (0)99.7 (0.1)Kernel PLSh discriminant analysis

62.9 (34.3)72.3 (4.6)31.1 (8.8)89.6 (2.6)22.7 (7.8)98.7 (0.2)Bagged CARTi

61 (38.1)72.4 (7.8)29 (14.5)91.6 (3.5)13.3 (9.6)98.8 (0.4)Quinlan’s C5.0 algorithm

62.8 (35.8)70.2 (4.3)31.4 (9.9)92 (2.4)18.9 (7.7)98.8 (0.2)K nearest neighbors

59 (44.3)76.2 (2.8)23.3 (15.8)95.6 (1.5)1.1 (2.6)98.9 (0.2)Support vector machine

62.9 (38.3)77.1 (5.5)30.7 (15.6)94 (2.4)14.1 (10.7)98.7 (0.3)Neural network

aNEG: uninfected-unvaccinated.
bVAC1: vaccinated with 1 dose.
cVAC2: vaccinated with 2 doses.
dINF.VAC: infected-vaccinated regardless of the number of doses.
eINF: infected-unvaccinated.
fMean predictive performance across the 5 statuses.
gSelected model.
hPLS: partial least squares.
iCART: classification and regression tree.

Figure 3. Density estimation of the log10 values of the serological assays (LN, LS, and PNT) according to their known SARS-CoV-2 status in the
prepandemic data set. LN: nucleocapsid; LS: spike protein; NEG: uninfected-unvaccinated; PNT: pseudoneutralization assay.

Prediction for the SERPICO Serosurvey
The model was applied to the French nationwide
serosurveillance survey SERPICO (n=23,886). The consistency
of the predictions was confirmed by comparing the predicted
results to internal and external reference information

(Multimedia Appendix 1). It follows that the estimation of the
vaccinated proportion of the French population was correctly
predicted, especially between March 2020 and June 2021.
Predictions were less accurate for the last 2 periods as the
proportion of individuals with a complete vaccination scheme
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(VAC2 and INF.VAC) tended to be underestimated in the
prediction.

The average percentages of the 5 predicted SARS-CoV-2
immune statuses are shown in Figure 4 for the 8 sampling
periods. For the first 4 periods, individuals were mostly
predicted as NEG (March 2020: mean 99.1%, SD 0.2%; October
2020: mean 94.7%, SD 0.4%). Between February 2021 and
March 2022, the number of INF individuals increased from
7.5% (SD 0.4%) to 16.8% (SD 0.7%). From June 2021, the
numbers of vaccinated (VAC1 and VAC2) and INF.VAC
individuals increased in relation with the rollouts of vaccination
for the older population from the end of December 2020, for
any person older than 12 years from June 2021, and for children
aged 5 to 11 years from December 2021 in France. The
prediction performances of the model were usually better for
the most common statuses (NEG and INF). The INF.VAC status
was better predicted in the 4 later periods during the vaccination
rollout.

No difference in SARS-CoV-2 predicted status was observed
between genders, except in October 2021 (Figure 5, left panel).
At this time, the percentage of predicted NEG men was higher
than that of women. No other significant difference was

observed due to large CIs associated with the VAC1, VAC2,
and INF.VAC predictions.

The percentage of INF individuals was similar in all age groups
over the 7 sampling periods (Figure 5, right panel). In June
2021, the proportions of individuals predicted as VAC1 and
VAC2 increased first in older age groups (60-69, 70-79, and
older than 80 years) as vaccination was rolled out for these age
groups first. Conversely, the proportion of individuals predicted
to be NEG remained higher for the younger age groups during
the same period. The proportion of NEG individuals was still
higher in children aged 0 to 9 years in comparison with other
age groups in October 2021 because vaccination was open only
to children aged 5 to 11 years.

Predictions for the 5 SARS-CoV-2 statuses can be illustrated
according to French administrative regions (Figure 6). The
epidemic first progressed in the Eastern part of France between
March and May 2021 and then spread to the Paris region and
to the northern part of France in October 2021. Spatial variability
was observed in immune status, with the predicted fraction of
vaccinated individuals being higher in the western part of France
than in other regions in June and October 2021.

Figure 4. Percentages (95% CI) of SARS-CoV-2 predicted status for the 8 collection periods. INF: infected-unvaccinated; INF.VAC: infected-vaccinated
regardless of the number of doses; NEG: uninfected-unvaccinated; VAC1: vaccinated with 1 dose; VAC2: vaccinated with 2 doses.
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Figure 5. Percentages (95% CI) of SARS-CoV-2 predicted statuses for the 8 collection periods according to gender (left panel) and age group (right
panel) in the SERPICO data set. INF: infected-unvaccinated; INF.VAC: infected-vaccinated regardless of the number of doses; NEG:
uninfected-unvaccinated; VAC1: vaccinated with 1 dose; VAC2: vaccinated with 2 doses.
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Figure 6. Percentages of SARS-CoV-2 predicted status for the 8 collection periods according to regions in France for the SERPICO data set. INF:
infected-unvaccinated; INF.VAC: infected-vaccinated regardless of the number of doses; NEG: uninfected-unvaccinated; VAC1: vaccinated with 1
dose; VAC2: vaccinated with 2 doses. For a higher-resolution version of this figure, see Multimedia Appendix 2.

Discussion

Serological Assays
The objective of our study was to predict the infected or
vaccinated status of the individuals enrolled in the SARS-CoV-2
serosurveillance survey without prior information on their
SARS-CoV-2 infection or vaccination status. For that purpose,
reference data on serological profiles of seronegative, infected,
and vaccinated individuals from another French cohort were
used to build the predictive model. This approach was possible
because serological testing was carried out using the same assays
developed by the National Reference Centre for Respiratory

Diseases of the Institut Pasteur, ensuring the comparability of
the serological results between studies.

LuLISA-S is a sensitive assay for identifying individuals
exposed to SARS-CoV-2 infection or vaccination. As the
vaccines used in France target the SARS-CoV-2 spike protein
only, we were confident in the ability of the LuLISA-N assay
to distinguish naturally infected individuals from vaccinated
ones in the CURIE-O-SA and SERPICO surveys. The LN and
LS assays were studied in the context of infection and
vaccination [13]. What was less expected was the determinant
role of the PNT assay in differentiating INF.VAC individuals
from others. The infected status was characterized by a higher
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pseudoneutralization capacity than that in vaccinated individuals
only, confirming previous observations of the higher protection
conferred by infection followed by vaccination [4]. Therefore,
the 3 serological assays were complementary and essential to
obtain a clear distinction between all SARS-CoV-2 statuses in
the population, despite the fact that using 3 assays is costly and
time-consuming for serosurveillance purposes.

Machine Learning and Data-Driven Analysis
To build models predicting the SARS-CoV-2 status from
serological assays, a machine learning procedure was applied.
This procedure made it possible to compare a large number of
classification models and select the most predictive one. This
kind of procedure was previously used for prediction of
SARS-CoV-2 status based on serological test results in a
population vaccinated with whole virion vaccines [8].

The proposed procedure was based on raw serological results
without setting any thresholds, contrary to previous works [3].
The thresholds used in the SERPICO survey were designed to
maximize the specificity of the assays in a context of a low
prevalence of SARS-CoV-2 infection in France from March
2020 to April 2021. In this study, adopting a data-driven strategy
without any assay threshold enabled us to capture the evolution
of the SARS-CoV-2 epidemic without modifying the assay
interpretations over time [14]. The proposed model exhibited
similar performance to the standard method for distinguishing
negative versus positive SARS-CoV-2 immune statuses;
however, it provided additional information about the positive
status (ie, vaccinated, infected, or both; Multimedia Appendix
1).

To ease the use of the model, an R-shiny application was
developed for the National Reference Centre and implemented
in a user-friendly environment. Input data from the serological
assays can be uploaded as a data frame and the most likely
SARS-CoV-2 status is given [15].

Vaccination Impact on Seroprevalence
Application of the predictive model to serosurveillance results
gave useful insights for interpreting the evolution of
SARS-CoV-2 seroprevalence in France. Between June and
October 2020, the proportion of individuals who were
seronegative to SARS-CoV-2 infection was still higher than
90% despite the first 2 SARS-CoV-2 waves that greatly
impacted health services in March and September 2020. The
observed quasistability of seroprevalence over this period could
be explained by an increase in seroprevalence due to the waves
of infections, tempered by the fairly rapid decrease in
anti–SARS-CoV-2 antibodies.

Between October 2020 and March 2022, the proportion of
seronegative individuals decreased. As the proposed predictions
showed that the proportion of INF individuals did not increase
over the same period, the decrease of the seronegative
population could be mainly attributed to vaccination.
Additionally, the decrease of the NEG population occurred
earlier in the older age groups (older than 60 years) who were
targeted first by the vaccination program. A part of this older
population also benefited from a hybrid immunity due to
vaccination and infection, although to a lesser degree than the

rest of the adult population. On the contrary, two-thirds of
children aged 0 to 9 years were still seronegative to
SARS-CoV-2 in October 2021 due to a later rollout of
vaccination for children aged 5 to 11 years. The expected
percentages infected children aged 0 to9 years increased from
1.3% to 36.4% from October 2021 to March 2021. This clearly
shows the impact of the Omicron strain on this poorly vaccinated
population. All together, these results confirm that population
immunity toward SARS-CoV-2 infection would progress very
slowly without vaccination in the French population [16].
Moreover, such a strategy—necessarily combined with
continued restrictive measures aimed to avoid overwhelming
the health care system—would have had a tremendous impact
on the economy and mental health.

Consistency of the Predictions
The proposed predictive model produced SARS-CoV-2 immune
status predictions in accordance with the observed SARS-CoV-2
epidemiological situation in France from March 2020 to March
2022 as results were only given in terms of infection prevalence
(Multimedia Appendix 1). Predictions by region, gender, and
age were consistent with the epidemiological weekly
observations of the SARS-CoV-2 epidemic [17].

The consistency of the predictions was largely due to the use
of 3 complementary serological assays that enabled us to finely
distinguish the 5 SARS-CoV-2 statuses through a machine
learning procedure. The main limit of the predictive models is
associated with the data from the cohort used for calibration
and validation of the models. Indeed, women and middle-aged
individuals were overrepresented in the CURIE-O-SA cohort.
The lack of profile diversity in the calibration and validation
data set may explain why including the covariates (gender and
age) did not improve model predictions. In addition, the
CURIE-O-SA study took place from April 2020 to November
2021; therefore, it did not capture key evolutions in the
SARS-CoV-2 epidemic in France, such as the emergence of the
Omicron variant (November 2021) that provoked a different
response to the PNT assay used in our study. In addition,
infected and vaccinated individuals became more frequent in
the overall population over time. This profile of individuals and
individuals vaccinated with 1 dose were rare in the
CURIE-O-SA cohort, leading to poor accuracy in the prediction
of those statuses. The high percentages of individuals predicted
to be vaccinated with 1 dose in October 2021 and March 2022
may have been due to the waning immunity of individuals
vaccinated with 2 doses for a long time [5,18-20]. Lastly, the
CURIE-O-SA cohort did not cover the rollout of the third
vaccination dose. The validity limits of the predictive models
were thus reached in October 2021, as exemplified by the
overlapping CIs of the different percentages of vaccination
statuses. The collection of new reference results including both
results for the 3 serological assays and SARS-CoV-2 infection
and vaccination history of the individuals is needed to update
the model. Maintaining serosurveillance distinguishing
vaccinated or infected populations is of interest to describe the
evolution of SARS-CoV-2 immunity in the overall population
and to understand immunity waning over time, but additional
samples are needed for that purpose.
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Conclusion and Perspectives
A predictive model of individual vaccination or infection status
with respect to SARS-CoV-2 was proposed based on 3
complementary serological assays and based on a machine
learning procedure. This model was applied to the French
nationwide serosurveillance survey from 2020 to 2022 to
estimate the proportions of the French population that were
seronegative, infected, vaccinated (1 or 2 doses), or infected
and vaccinated, as this data set included no prior information
on the SARS-CoV-2 infection or vaccination status of the
individuals. This allowed us to follow the level of SARS-CoV-2
infection and the vaccine response profile of the French
population over time.

Combining the results from the serosurveillance survey with
previously acquired results from a cohort studied longitudinally
improved the information retrieved from serosurveillance while
keeping its protocol simple and easy to implement (no need to
collect SARS-CoV-2 information on a large sample of
individuals). We think that such a combination strategy is of
interest to improve serosurveillance of emerging
vaccine-preventable diseases. The results of our predictive
model make it possible to measure the crucial contribution of
SARS-CoV-2 vaccination to rapidly reach a level of collective
immunity that has made it possible to relax sanitary measures
without overloading the health care system. Indeed, population
immunity toward SARS-CoV-2 infection would have progressed
very slowly without vaccination.
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