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ARTICLE OPEN

Multilayer networks of plasmid genetic similarity reveal
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Antimicrobial resistance (AMR) is a significant threat to public health. Plasmids are principal vectors of AMR genes, significantly
contributing to their spread and mobility across hosts. Nevertheless, little is known about the dynamics of plasmid genetic
exchange across animal hosts. Here, we use theory and methodology from network and disease ecology to investigate the
potential of gene transmission between plasmids using a data set of 21 plasmidomes from a single dairy cow population. We
constructed a multilayer network based on pairwise plasmid genetic similarity. Genetic similarity is a signature of past genetic
exchange that can aid in identifying potential routes and mechanisms of gene transmission within and between cows. Links
between cows dominated the transmission network, and plasmids containing mobility genes were more connected. Modularity
analysis revealed a network cluster where all plasmids contained a mobM gene, and one where all plasmids contained a beta-
lactamase gene. Cows that contain both clusters also share transmission pathways with many other cows, making them candidates
for super-spreading. In support, we found signatures of gene super-spreading in which a few plasmids and cows are responsible for
most gene exchange. An agent-based transmission model showed that a new gene invading the cow population will likely reach all
cows. Finally, we showed that edge weights contain a non-random signature for the mechanisms of gene transmission, allowing us
to differentiate between dispersal and genetic exchange. These results provide insights into how genes, including those providing
AMR, spread across animal hosts.

The ISME Journal; https://doi.org/10.1038/s41396-023-01373-5

INTRODUCTION
Antimicrobial resistance (AMR) is a significant threat to human and
animal health globally [1]. Livestock may serve as a reservoir of
antibiotic-resistant bacteria due to the widespread use of
antibiotics in the agricultural sector for prophylaxis and growth
promotion [2, 3]. This trend is likely to continue due to increasing
demand for animal products and the intensification of livestock
production globally [4]. AMR from livestock can spread into the
environment, including soils and water bodies [5–8] and
contaminate food products, reaching humans [9].
The spread of antibiotic resistance genes within and between

species happens primarily via plasmids [10]. Plasmids are mobile
genetic elements, often circular and ranging from thousands to
hundreds of thousands of base pairs long, that can propagate
independently of their host’s chromosome. While they can be
found in archaea and eukaryotes, they are most well-known in
bacteria [11]. Plasmids allow bacteria to adapt to their environ-
ment by carrying accessory genes, such as those for antibiotic
[12–14], or heavy metal resistance [14, 15], which are beneficial
under particular environmental conditions. Given the relevance of
plasmids to the spread of AMR [16, 17], it is essential to
understand how they disperse in their natural habitats between

their animal hosts and interact with each other. While plasmids are
one of the principal vehicles for horizontal gene transfer (HGT)
between bacteria, genetic exchange also occurs between
plasmids, for example via homologous recombination [11, 18].
This results in gene transfer between plasmids, which we term
plasmid-HGT (pHGT). Due to pHGT, many plasmids appear to be
mosaic. Mosaic plasmids can incorporate genetic material from
multiple plasmids hosted by distantly related bacterial species,
although this varies significantly by host taxonomy [19–21].
Livestock can be reservoirs of plasmids containing AMR genes

[22–25]. More generally, ruminants, such as cattle, host diverse
microbial communities, particularly in the rumen. Rumen microbes
allow cattle to digest otherwise indigestible plant matter [26, 27].
While research on plasmids traditionally focused on those that are
clinically relevant [28], advances in metagenomics and sequencing
technology have enabled the exploration of the plasmidome, all
plasmids within a given sampled environment, including the
bovine rumen [29, 30]. This approach has revealed that the bovine
rumen plasmidome is diverse, and differs more between
individuals compared to the bacterial microbiome [29, 30]. Based
on the similarity of their open-reading frames (ORFs) to those in
bacteria, the plasmids of the bovine rumen appeared most
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commonly associated with Firmicutes and Bacteroidetes [29, 30].
Many are mosaic, including some showing evidence of cross-phyla
genetic exchange [30]. Rumen plasmids are enriched for functions
related to digestion and metabolism, as well as plasmid functions
such as mobilization and replication, but the majority of ORFs
have unknown functions [29, 30]. Similar findings were also
reported in other ecosystems, such as the rat cecum, where
cryptic plasmids have also been found to dominate the
plasmidome of [31].
Genetic exchange and dispersal may leave a signature of

genetic similarity within a population, which can be detected
using network analysis [32–36]. Thus far, networks of plasmid
genetic similarity have primarily been used to analyze broad
population structures among plasmid types and classify them into
taxonomic units [33, 34, 37]. Network analyses have revealed gene
sharing across geography, habitat type, and to some extent host
phylogeny [34, 38, 39]. Several studies identified plasmids that
provide a bridge between otherwise unconnected bacterial
communities [18, 40]. Hence, plasmid genetic similarity networks
may allow us to use signatures of past events within a plasmid
population to help identify potential pathways for future
transmission. This application, which is critical in the context of
AMR, remains unexplored.
Because plasmids are infectious agents, disease ecology theory

and methodology can prove beneficial to understanding the
relationship between network structure and transmission
dynamics [41–44]. Using plasmid similarity networks to under-
stand mechanisms of gene spread is tantamount to using
parasite-sharing networks as a proxy for potential parasite
transmission across multi-species host communities in disease
ecology [42, 45], or networks that describe contacts between
individuals. Essentially, any “transmission network” describes
potential pathways for pathogen transmission, and there are
multiple ways to estimate these pathways [44]. In the case of gene
transmission across plasmids, this approach requires that plasmid
genetic information is collected within the same system. However,
nearly all studies used plasmid sequences originating from diverse
and geographically distant environments because they were
mined from databases [33, 34, 37, 39, 40]. Using plasmids from
different systems is inadequate for determining pathways of
genetic exchange or dispersal on finer spatial and temporal scales;
for instance, between and within animal hosts. One study used
plasmid similarity networks constructed from F-type plasmids
from livestock farms (cows, pigs, or sheep) and water [46]. The
plasmid networks and communities were structured by their
broad ecological niche (farm vs. water), demonstrating the
potential limits of plasmid dispersal and genetic exchange across
environments [46]. Although the data were collected in a natural
system, samples from animals were pooled by site, impeding the
estimation of plasmid spread between individual hosts.
Here, we leverage a data set of the rumen plasmidome of dairy

cows in a single population. We aim to identify signatures of
genetic exchange between plasmids and potential pathways for
gene transmission within and between cows. To address this goal,
we use an ecological multilayer network framework, which
explicitly harnesses variation in network structure across multiple
data layers [47]. We capture signatures of genetic similarity within
and between individual cows (layers). By adopting analytical
approaches and terminology from disease ecology, we interpret
the data in light of gene transmission. Specifically, we look for
signatures of super-spreading at the level of both plasmids and
cows, whereby a few plasmids (or cows) are responsible for the
majority of transmission [48].
We find that plasmid genetic similarity networks are dominated

by links between cow hosts. The transmission network is highly
fragmented into clusters of plasmids (i.e., modules) with a highly
heterogeneous size distribution, pointing to the dominant role of
between-host transmission in shaping the genetic signature of

this plasmid population. Such heterogeneity also indicates
potential super-spreading at the level of both plasmids and cows.
We further found that plasmids with the same AMR genes, though
rare in our data set, formed independent network clusters
(modules).
Modeling showed that network structure determined the extent

of gene transmission. By investigating signatures of genetic
similarity in the network, we can understand how plasmids
interact within and between animal hosts, providing insights into
the mechanisms by which AMR genes can spread.

RESULTS
The multilayer network is dominated by an interlayer, cow-to-
cow connectivity
We constructed a weighted, multilayer network between plas-
mids. In our multilayer network, each cow is a layer, and the nodes
within each layer are plasmids (Fig. 1). Intralayer links were
calculated as the genetic similarity between plasmids within a
layer based on sequence alignments (Methods). A prominent
feature of multilayer networks is interlayer links, which connect
nodes between layers and encode ecological processes that
operate between the layers [47]. We defined the interlayer links
using the same measure as intralayer links (Fig. 1), allowing us to
simultaneously detect signatures of gene exchange within and
between cows. Using the same definition is also advantageous
because it places intra- and inter-layer processes on the same
scale, avoiding a-priori biases of network metrics towards
processes operating on either type of edge [36, 47, 49].
Our network included 1344 plasmids in 21 cows. Of these

plasmids, 92% were detected in only a single cow. Because
plasmids can occur in more than one cow, the total number of
nodes in the network exceeds the number of plasmids. Following
standard terminology [47, 50], we define plasmids as “physical
nodes” and plasmid-layer combinations as “state nodes”, indicat-
ing that the same plasmid can be in a different ecological state; for
instance, contributing differently to gene exchange in different
cows. Our network included 1514 state nodes. The maximum
number of cows in which an individual plasmid was detected was
13. The number of plasmids per cow ranged from 1 to 175, with a
mean of 72. While pairs of plasmids (i.e., network links) could have
multiple alignments between them, 2728 of the 2738 links
contained only a single alignment. Overall, the network was very
sparse, with only 0.2% of the potential links realized.
We asked whether links were primarily within or between cows

to gauge the importance of plasmid interactions between hosts.
Most edges in the network were inter-layer (Fig. 1). However, a
comparison of raw edge counts is biased by the vastly different

Fig. 1 A plasmidome multilayer network definition. Cows are
layers and physical nodes are plasmids. The same plasmid can occur
in different cows (e.g., the green plasmid). Intralayer (black) and
interlayer (blue) links are weighted and defined based on sequence
similarity (see Methods). The pie chart shows that the network is
dominated by interlayer edges.
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number of possible intra- and inter-layer edges (87,002 vs.
1,058,339, respectively). Therefore, we also compared the propor-
tion of realized intra- and interlayer links out of all possible ones
(i.e., density). The density of inter-layer edges was twice as high as
intra-layer edges (0.25% vs. 0.12%). Therefore, there is a much
stronger signature of genetic exchange between cows compared
to within them.
We tested the effect of cow identity on connectivity by

comparing the observed network to 1000 randomized networks
in which we shuffled the identity of cows (hereafter, “shuffled
networks”). The observed network had a significantly higher
density of intra- (p < 0.001) and inter-layer edges (p < 0.001), and a
higher density (p < 0.001) than the shuffled networks (Supple-
mentary Fig. 1). This indicates that despite the sparse nature of the
network, it is still more connected and with a larger contribution
of inter-layer edges compared to intra-layer than expected at
random. Overall, the network was dominated by interlayer
connectivity, suggesting that gene exchange is more likely
between plasmids from different cows than within a cow.

Skewed plasmid contribution to gene exchange implies super-
spreading
We can use the intra- and interlayer connectivity to test if specific
plasmids contribute disproportionately to gene transmission and
exchange by examining the distribution of their degree (number
of plasmids to which a plasmid is connected) and the distribution
of links to cows. Both distributions were highly skewed (skew-
ness= 10.5 and 10.4, respectively) (Supplementary Fig. 2), with
most plasmids having a few links and a few plasmids having many
links to both other plasmids and cows. A skewed distribution
indicates that few plasmids may be responsible for most of the
transmission and interactions in the network. This pattern is in line
with super-spreading theory from disease ecology that consis-
tently finds that a few hosts (here plasmids) are responsible for the
majority of parasite (here an AMR gene) transmission [48, 51]
(Supplementary Information).

The network is characterized by asymmetric and nonrandom
pathways of gene transmission
Although the plasmid similarity network is highly sparse, it may
still contain major pathways of gene exchange. In epidemiology
and disease ecology, areas of potential transmission in networks
can be detected using community detection algorithms, loosely
referred to as modularity [41, 52]. Modularity is a mesoscale
property in which parts of the network are denser compared to
others [53]. We detected modules using Infomap, an algorithm
based on the movement of a random walker on the network.
Infomap is explicitly designed for multilayer networks and also
measures the amount of flow contained within each node (the
total flow across state nodes in the network sums to 1) [54–56].
Flow measurement is particularly suitable for our purposes
because it is directly related to the idea of gene exchange [56].
Modules, therefore, represent high-level potential pathways of
transmission.
While the network was highly fragmented with 414 modules, it

was significantly less so than the shuffled networks, which had, on
average 83% more modules (723–797, mean= 760, p < 0.001)
(Supplementary Fig. 3A). As with the node-level pattern, this
mesoscale topology was highly skewed: while most modules in
the observed network were small, with an average of 3.3 plasmids
across 3.4 cows, one exceptionally large module encompassed 12
plasmids and 16 cows (≈4 times the average number of plasmids
and cows in a module). This module included 215 links,
accounting for 7.9% of all the links in the network, most of which
were inter-layer (n= 205) and intra-modular (n= 206). Hence, it
represents a potential major pathway of transmission and genetic
exchange between plasmids, particularly across different hosts
(Fig. 2A). Nodes within this largest module encompassed 8% of

the flow, which is an order of magnitude more than the mean flow
per module (0.2%) (Z score = 13.3, p < 10−5). Comparison to the
largest module in each shuffled network showed that while the
number of unique plasmids (physical nodes) within a module did
not differ (p= 0.35), the flow in the largest module of the
observed network was significantly greater than its counterpart
largest modules in the shuffled networks (p= 0.003) (Supplemen-
tary Fig. 3B). Therefore, more genetic exchange occurs within this
large module than expected if plasmids were randomly distrib-
uted among cows. Taken together, these results point to a portion
of the network where a disproportionately large amount of gene
exchange occurred.
The number of modules in which cows were present was

skewed (Fig. 2B) but indicated that cows share transmission
pathways. To further investigate potential transmission between
cows, we calculated module sharing sij ¼ mi \mj

�� ��=mj . That is, the
number of modules shared between pairs of cows (mi, mj), out of
the total modules in cow mj. Module sharing was highly
asymmetric, ranging from 0 to 100% (median = 14%) (Fig. 2C).
As expected, cows with few modules shared all or most of them.
There was a negative correlation between the number of modules
a cow hosted and the mean proportion of modules shared with
other cows (Kendall’s tau=−0.785, p= 7.2e−7). Thus, a few cows
may serve as hubs for many interacting groups of plasmids,
linking peripheral cows to transmission pathways. Nevertheless,
some cows with many modules still shared a high proportion of
them. For instance, four of the five cows with the highest number
of modules (125–164 modules) shared 53–69% of their modules
with other cows. Thus, there are potential hot spots for plasmid
transmission.
The proportion of shared modules between cows was higher

than the percentage of shared plasmids, which ranged from 0 to
66.6% with a median of only 0.71% (Supplementary Fig. 4). Nearly
half (47.1%) of cow pairs shared no plasmids. While this pattern is
partially an artifact of the much larger number of plasmids
compared to modules, it also demonstrates that while the cows
predominantly do not host identical plasmids, they still share
transmission pathways. This observation was further supported by
the low correlation between the proportion of shared modules
and the proportion of shared plasmids (Kendall’s tau= 0.41,
p < 2.2e−16).
To validate the notion of cows as transmission hubs, we

compared observed module sharing to that obtained in the
shuffled networks. For each cow pair, we calculated a z-score of
module sharing (Methods). Out of the 420 possible pairs, 98 shared
significantly more (z-score > 1.96), and 194 shared significantly
fewer (z-score <−1.96) modules than the random expectation.
The skew towards fewer pairs of cows sharing many modules is
again consistent with potential super-spreading in the network,
this time at the cow level. Together, these results illustrate that the
signatures of potential super-spreading are observed not only at
the plasmid level but also at the cow level.

Simulations of plasmid-borne gene transmission between
cows
We then asked how network structure might affect the spread of a
hypothetical AMR plasmid-borne gene through the cow popula-
tion. To address this, we constructed a stochastic agent-based
model of gene transmission. In this model, the gene is initially
present in a single plasmid (state node). We randomly chose
20 starting plasmids: 10 highly-connected plasmids that are a part
of the largest module and 10 peripheral plasmids from the
smallest modules (those containing two state nodes). In each time
step, a certain number of plasmid pairs come in contact. If one of
the plasmids in the pair has the gene, the probability that the
gene is transmitted to the second plasmid is equal to the genetic
similarity (edge-weight) between them since research has shown
that pHGT is positively correlated with genetic similarity [57].
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Bacteria are implicit in our model, and we assume that plasmid
contact occurs within bacterial cells. The gene may also be lost
from a plasmid with a rate depending on the level of positive
selection pressure (higher selection pressure leads to lower loss
rates). To determine the trade-offs between plasmid contact and
selection pressure, we ran the model with low (10 plasmids in
contact), intermediate (100 plasmids in contact), and high (1000
plasmids in contact) total contact rates and accounted for
selection pressure through gene loss rates: high (0 loss per
capita), intermediate (0.01 per capita), and low (0.1 per capita). We
ran the model for 1000 time steps and measured the number of
cows to which the AMR gene arrived.
At high contact rates, the gene quickly dispersed to all cows in

approximately the same amount of time at any level of selection
pressure (Fig. 3). At intermediate contact, the gene could reach all
cows at high or intermediate selection pressure. However, it took,
on average, approximately nine times as many time steps
compared to the high selection pressure simulations. At low
contact, it was only possible for the gene to reach all cows at high
selection pressure, but this only occurred in a small percent of
simulations (14–15%) and when it did, it required ~900 time steps
on average (Fig. 3, Supplementary Table 1).
Patterns of gene transmission were nearly identical when

starting in either highly connected or peripheral plasmids (Fig. 3,
Supplementary Fig. 5, Supplementary Table 1). Similar dynamics
between highly connected or peripheral plasmids may stem from
the fact that once a plasmid reaches a well-connected cow, it
spreads extremely quickly to others (Fig. 2). For instance, even the
five cows that are not a part of the largest module still contained
other large modules (9–18 state nodes). Thus, even under low or

intermediate selection pressure, between-cow module connectiv-
ity may allow genes to rapidly reach all hosts in this population via
pHGT if contact between plasmids is high enough. Another
possible factor is the small cow population size (n= 21)
studied here.

Link weights are indicative of mechanisms underlying plasmid
similarity
So far, we have shown that there are nonrandom signatures of
disproportionate contributions of plasmids and cows to gene
exchange. However, these patterns do not suggest particular
mechanisms by which gene exchange can occur. We hypothesize
that such information is contained in the distribution of link
weights. Specifically, plasmid dispersal should be manifested by
high similarity between plasmids (very strong links), as the two
nodes are essentially the same plasmid. In contrast, low link
weights will indicate pHGT because a small section of the
plasmids’ DNA is shared (e.g., via recombination). The distribution
of edge weights in the network displayed two abrupt breaks at 0.5
and 0.95 (Fig. 4A, B). We hypothesize that these breaks correspond
to pHGT (edge-weights < 0.5) and dispersal (edge-weights > 0.95).
Between these two scenarios lies a third one, which we call
“distant dispersal”. In distant dispersal, a plasmid disperses and
then undergoes genetic change via mutation or rearrangements
by transposons. While it is impossible to pinpoint the particular
mechanism of genetic change by pairwise genetic similarity in this
scenario, such a mechanism could explain why distant dispersal
lies between HGT and dispersal.
The division into subnetworks represents a hypothesis that

these mechanisms (pHGT and dispersal) drive the observed edge-
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Fig. 2 Pathways of gene transmission are related to network structure. A A layer-perspective representation of the entire network. Nodes
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modules shared between cows. Each cell is calculated as the number of modules that cow j (columns) shares with i (rows), divided by the total
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weight distribution. The first step to address this hypothesis is to
test whether this distribution is non-randomly determined by
sequence similarity, which is the pattern resulting from gene
exchange. We resampled the alignment length between plasmid
pairs without replacement 1000 times, leaving all other values the
same. We then recalculated the edge weights on the resampled
data set. The two abrupt breaks did not exist in the resampled
networks. In addition, the observed edge weight distribution was
significantly different from that obtained by resampling (Kolmo-
gorov-Smirnov test, D= 0.25, p < 0.0001), indicating that the
observed distribution is likely the result of biological processes
(Supplementary Fig. 6).
We then investigated each gene exchange mechanism by

dividing the network into three multilayer subnetworks according
to the link weights (Fig. 4A, B). The subnetworks varied in size,
with the distant dispersal subnetwork dominating in numbers of
plasmids and edges (Fig. 4C). While edges could only belong to
one subnetwork, plasmids could belong to multiple subnetworks
(Fig. 4C). The pHGT subnetwork had the highest density of intra-
(0.50%) and inter-layer edges (0.78%) compared to both the
recent dispersal (intra-layer= 0.38%; inter-layer= 0.22%) and
distant dispersal (intra-layer= 0.11%; inter-layer= 0.25%) subnet-
works. These differences in density point to the importance of
pHGT in driving patterns of genetic similarity seen in the network.

Genes of mobility and antibiotic resistance affect node
importance and network structure
We then asked whether plasmid functional traits influence
plasmid importance and the modular structure. To do so, we
examined the role of plasmid mobility genes, which provide the
ability to transfer to new bacterial hosts (Methods). Plasmids that
are conjugative (or self-transmissible) code for all the necessary
proteins to transfer themselves while those that are mobilizable
must use the machinery, particularly the mating pair formation
complex, of another element in the cell for transfer [58–60].
Generally, at least half of plasmids are non-mobilizable (neither
conjugative nor mobilizable) [58]. We measured the effect of mob
genes on plasmids’ degree, module flow, and the characteristics of

the modules they are found in using Mann-Whitney-Wilcoxon
tests. In the data set, 235 plasmids (17.4%) had mob genes. We
found that plasmids with mob genes had a significantly higher
degree and greater flow but were not found in a greater number
of cows, compared to plasmids without the mob genes. Modules
containing plasmids with mob genes (83 out of 414) were larger,
contained more unique plasmids, encompassed more cows, and
had a greater flow (Table 1).
All 12 plasmids in the largest module (Fig. 2A) contained a

mobM gene, known to be widely distributed across plasmids
isolated from enterococci, streptococci, and staphylococci. The
former two are prevalent within the rumen environment, and
consist of known representatives such as Streptococcus bovis and
Enterococcus faecalis [61], which could explain the plasmid
presence within this module. A plasmid with a mobility gene is
likely to have high dispersal rates between bacterial hosts of these
lineages and hence between cows. Therefore, this module could
be composed of plasmids recombining with their bacterial hosts’
genomes and among themselves as they occur in the same hosts.
It is important to note that plasmid-plasmid interactions could be
mediated through the bacterial genome. Therefore, plasmids are
not necessarily required to temporally coincide within the same
cell to recombine. An alternative hypothesis is that these plasmids
belong to a common plasmid ancestor whose multiple copies
underwent genetic changes while mobilizing across hosts.
Supporting this hypothesis is the fact that 95% of the edges in
the module were dispersal edges. Nevertheless, these two
scenarios of plasmid recombination and plasmid ancestor
modification are not mutually exclusive.
We identified ORFs related to antimicrobial resistance in 12

plasmids (0.9%). Eight were for beta-lactam, three for tetracycline
resistance, and one for penicillin-binding protein. Interestingly,
plasmids with beta-lactam and tetracycline resistance were
separated into two distinct modules that contained no other
plasmids. The module containing the beta-lactam-resistant
plasmids spanned 11 different cows, making it the third largest
in the network in terms of layers (Fig. 2A). Of the edges linking
plasmids with beta-lactam resistance, 77% belonged to the distant

Fig. 3 Simulated gene transmission dynamics in a cow population. Results of simulations of gene transmission among cows when the gene
originates in a highly-connected plasmid. Each point is the number of cows with the gene at each time step averaged over 300 simulations
per plasmid. Contact refers to the contact rate between plasmids. When plasmids encounter each other, and consequently exchange genes, at
high rates, the gene is quickly transmitted to all the cow population. See Supplementary Fig. 5 for results of simulations starting with
peripheral plasmids.
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dispersal subnetwork while the rest belonged to the recent
dispersal subnetwork. All the links between the three plasmids
with tetracycline resistance corresponded to the distant dispersal
network. Thus, plasmid dispersal is likely the primary mechanism
for the spread of plasmid-mediated antibiotic resistance between
hosts. This suggests that selective pressure for antibiotic resistance
genes could promote the dispersal and persistence of these
plasmids across cows.

DISCUSSION
A significant gap in understanding the spread of AMR involves
understanding how plasmid-borne AMR genes spread within and
between microbial communities and animal hosts. We addressed
this gap by drawing upon theory and methods from microbial and
disease ecology, using multilayer networks of genetic similarity
between plasmids in a population of dairy cows. While plasmid
genetic similarity networks have previously been used to classify
plasmids [33, 34, 37] and identify the transmission of plasmid-
borne genes across environments and geography at evolutionary
scales [18, 38, 39], these scales are less relevant for transmission
within animal populations. Here we used the signature left by the
genetic exchange between plasmids in their patterns of sequence
similarity to understand plasmid transmission between hosts at a
scale relevant to the transmission of plasmid-mediated antimicro-
bial resistance.
Specifically, we found evidence for super-spreading, including

the highly skewed distributions for node degree at the plasmid
level and module sharing at the level of cows. Moreover, we
showed that the module that contains plasmids with a mobM
gene and the module of plasmids with a beta-lactam resis-
tance gene coincide in eight of the 21 cows. These cows could be
super-spreaders of beta-lactam resistance because its spillover
from the beta-lactam module to the largest module could cause a
rapid transmission of the gene across the cow population. Super-
spreading has been found in the spread of antimicrobial
resistance in both humans [62–64], and cows [65]. Social networks
from cows have also shown that most individuals have relatively

few links to others, while a few individuals are highly connected,
further indicating the potential for super-spreading in the case of
an outbreak [66].
Identifying patterns of super-spreading is important because

they can guide management and control strategies to prevent the
spread of pathogens or antimicrobial resistance and increase the
effectiveness of interventions by targeting the most highly-
connected individuals or groups in the network [51, 65, 67]. The
transmission model we presented is a novel approach in this
direction because it links the structure of plasmid similarity
networks with gene transmission. While plasmid similarity net-
works are typically used to discern processes that generated
observed structures, our model can be further used to test
multiple hypotheses regarding the effect of network structure on
potential gene transmission.
The presence of mob genes affected plasmid connectivity and

network structure. Previous studies also found that conjugative
and mobilizable plasmids are more connected than non-
mobilizable ones [39, 68]. Plasmids with mob genes may have a
higher node degree because they can disperse more quickly
between bacteria and encounter other plasmids more frequently,
especially since mobilizable or conjugative plasmids are more
likely to be found in different bacterial families. This was
particularly evident in the plasmids of the largest module. In
contrast, non-mobilizable plasmids are more likely to be restricted
to a single species [34]. However, it is also important to consider
that many small plasmids can still spread rapidly in bacterial
populations, although currently the mechanisms are not well-
understood [68].
Analyzing modularity in our network allowed us to identify

potential transmission pathways between hosts. Hosts with similar
plasmids are more likely to share AMR genes, as has been shown
for pathogen types [42]. The fact that all plasmids with beta-
lactam and tetracycline resistance were found in distinct modules
supports the idea that modules represent potential gene
transmission pathways. This conclusion is strengthened by our
observation that plasmid mobility strongly affected the modular
structure. The presence of several large modules encompassing a

Fig. 4 Edge-weight distribution indicating mechanisms of gene exchange. A A simplified visualization of each multilayer subnetwork
(similar to Fig. 2A). Nodes are cows and their size is proportional to the number of intralayer edges within them. Edges indicate inter-layer
edges between cows and their width is proportional to the total number of interlayer edges. B The distribution of edge weights in the
network has two abrupt breaks (vertical gray lines) at 0.5 and 0.95. C Venn diagram depicting the number of plasmids shared between the
three subnetworks. Percentages are calculated with respect to the total number of plasmids in the data set. Circle size is illustrative of the
number of plasmids and edges in the subnetwork.
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large proportion of cows’ rumen ecosystems in this population
suggests that both plasmids and the genes they carry can quickly
disperse through this host population. The dynamical model
supported this result. Because the connectivity of modules
between cows is high, even if a gene appears in a peripheral
cow, it will quickly disperse to others.
The network was dominated by inter-layer edges, linking

plasmids in different cows. We hypothesize that interlayer
connectivity is mediated mainly by between-cow bacterial
transfer, while intralayer connectivity is mediated by plasmid
conjugation within the rumen of each individual cow. Research on
plasmid-mediated antimicrobial resistance in healthcare showed
that plasmids often transfer between individuals via a single
bacterial strain. At the same time, they tend to transfer between
species within the gut microbiome within individuals [62]. Thus,
our results could indicate that these plasmids are transferred
between cows carried by particularly efficient microbial colonizers.
However, plasmids have also been shown to disperse between
human hosts independently of the transmission of bacteria [69].
Our plasmidome data do not include the bacterial hosts involved
(see below). Therefore, while we cannot test this hypothesis,
future studies in this direction may shed light on the relative
importance of multilevel HGT and pHGT processes (bacteria
movement or plasmid movement).
We used the similarity networks to discern the roles of HGT and

dispersal, both of which play an important role in the spread of
antimicrobial resistance [62, 69]. Our initial exploration of these
new hypotheses showed that the distinctly segmented edge
weight distribution was non-random and, thus, was likely driven
by biological processes. Nevertheless, the division among pHGT,
recent dispersal, and distant dispersal network remains a
hypothesis. Further research, via both modeling and experiments,
is needed to test this hypothesis by observing rates of pHGT and
mutation in plasmid populations and determining under what
conditions the edge-weight distribution can be reproduced.
Our results clearly show extensive dispersal of plasmids

between cows, but we do not have information on the dispersal
mechanism. In healthcare settings, plasmids transferred between
patients via healthcare workers or environmental reservoirs
[62, 69–71]. In cows, plasmids could be transferred via the saliva
during grooming, especially if rumen plasmids were regurgitated
during rumination or otherwise found in the mouth. Alternatively,
transmission may occur via the fecal-oral route as cows may rub,
sniff, or lick the genital area of other individuals [66]. Transmission
could also be possible via bioaerosols from feces [72]. Combining
our plasmid similarity networks with social networks, using
measures such as proximity, allogrooming, or shared space use
between cows [43, 66, 73] could provide further insights into how
plasmids are transmitted between individuals.

Our study has several limitations. First, we have not explicitly
considered the plasmids’ bacterial hosts. Second, we do not have
any measures of cow social contact. Third, our data represent only
a single snapshot in time; longitudinal time-series analysis could
provide further information on the dynamics of plasmid interac-
tions and dispersal [74]. Fourth, our method of calculating plasmid
similarity relies on alignments, which might not consider
rearrangements in the genomes of plasmids [33]. Finally, we only
consider circular plasmids, although linear plasmids can also carry
AMR genes (also see Methods) [75]. Despite these limitations, our
study provides the first insight into potential gene exchange via
plasmid at a relevant spatio-temporal resolution.
In conclusion, genetic similarity networks provide a powerful

tool for understanding the transmission potential of plasmids and
their genes within host populations. We demonstrated that
plasmids are transmitted extensively between individuals within
a population of dairy cows, with signatures of super-spreading at
the level of both plasmids and cows. Plasmid functions,
particularly AMR and mobility, influence the network structure.
The genetic similarity between plasmids in this population of cows
shows signatures of both dispersal and genetic exchange,
providing insights into how plasmid-mediated AMR can spread
across hosts.

METHODS
Study system and initial data processing
We used an existing data set of plasmids sequenced from the rumens of 22
individual Israeli Holstein dairy cows housed on the same farm [30]. This
experimental setup includes a typical and standard husbandry diet applied
in multiple farms worldwide for intensive farming regimes. This allowed us
to have consistent conditions with no known confounding factors. The
cows in the study were not treated with antibiotics, as those harm the
rumen microbiome on which they depend. Hence, the general expectation
of identifying AMR genes was not high a-priori.
Sampling and bio-informatic protocols were previously described [30]. In

brief, samples of rumen fluid were obtained from each cow, DNA was
extracted, amplified using phi29 polymerase, and sequenced using the
paired-end protocol (GAIIX sequencer and HiSeq [Illumina]) [30]. Reads
from each cow were first assembled into plasmid contigs using SPAdes
[76]. We focused on plasmids as mobile elements while eliminating
chromosomal DNA that could skew our analyses. Hence, we used the
recycler tool [77] to select only circular plasmids from the contigs to
identify closed circular sequences that are not bacterial chromosomes.
Nevertheless, even with this stringent approach, the method still identified
plasmids ranging 2000–7297 bp, and carrying AMR genes.
The complete plasmid data set contained 8741 plasmid sequences. Each

sequence was assigned a name based on the cow in which it was detected.
We compared pairwise plasmid sequences using the BLASTn algorithm
[30]. We detected identical plasmid sequences sequenced from different
cows in the data set by comparing the plasmid length, alignment length,

Table 1. Comparison of node- and module-level metrics between plasmids and modules with (n= 235) and without (n= 1109) mob genes based on
the Mann-Whitney-Wilcoxon test. We show the median values for plasmids or modules with and without mob genes, U, and p value. Significant p
values (<0.05) are indicated in bold. The magnitude of the differences in these measures is small, possibly due to the low number of plasmids for
which mob-related ORFs were detected.

Scale Measure Median U p value

mob present mob absent

Plasmid Degree 3 2 118335 0.02

Flow 0.00042 0.00048 118570 0.03

Cows 1 1 126275 0.11

Module Unique plasmids 3 3 11728 0.03

Plasmid-cow combination 3 3 11209 0.006

Cows 3 3 11350 0.01

Flow 0.0011 0.00087 11485 0.02
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and percent identity. Identical plasmids were those with the same length
and 100% identity over 100% of their length with no gaps in the
alignment. We then confirmed that these plasmids were identical by
aligning them in the software Geneious (v.11). A total of 314 sequences
were identified as identical to at least one other sequence in the data set
and were consequently grouped in 138 identical plasmids. Each identical
plasmid was assembled from 2 to 5 cows, leaving 8565 unique plasmids.
We did not perform any further clustering. Each unique plasmid was
assigned a node id number (1–8565). Identical plasmids were assigned the
same node id. Each cow was also assigned a unique layer id (1–22). Cow
number 2 contained no plasmids that matched our criteria and was
excluded.
Because contigs were assembled from samples individually, we mapped

the reads from each individual cow back to the full set of plasmid contigs
using bbmap with the parameter “ambig” set to “all” to determine whether
additional plasmids from the data set not detected in the original assembly
were present in individual cows. Based on read mapping, we measured the
coverage of each plasmid sequence in each cow. We considered plasmids
to be present in a cow if they had 100% coverage in that cow.

Plasmid annotations
We used previously published annotations for plasmid ORFs [30]. These
ORFs were annotated by comparing them to the NCBI-NR protein database
using a maximum E value cut-off 10−5. For each ORF, the hit with the
lowest E value was chosen unless it was a hypothetical protein, in which
case we chose the next lowest E value. If all five of the lowest E value hits
were hypothetical proteins, the ORF was annotated as hypothetical.
Annotated functions were then manually curated into functional
categories such as “plasmid”, “phage” and “sugar metabolism” based on
their description in the database.
We conducted additional bioinformatic analyses on all plasmids in the

data set using the Resistance Gene Identifier (https://github.com/arpcard/
rgi). We did not detect additional AMR genes, but those already in our data
set were reverified, corroborating our previous analyses [30]. Moreover, for
all plasmids in the data set, we predicted the ORFs using Prokka and used
KofamScan to identify KEGG orthologies, which resulted in 15 KOs across
40 plasmids. We specifically blasted the plasmids in module #1 (the largest
module). Because blast results of entire plasmids had no hits, we also
manually looked for conserved domains of the plasmids in module #1 and
module #2 (which contained the plasmids with the beta-lactam-carrying
plasmids) using the Conserved Domain tool with NCBI (https://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?RID=3FEF4TF8013&mode
=all). These results can be found in the Supplementary Information.

Network construction
We used undirected networks because the directionality of exchange or
divergence between plasmids cannot be obtained from sequence
similarity alone [37, 78]. For each plasmid pair, we calculated an edge
weight as:

wij ¼
Xk
1

min
ls
lj
;
ls
li

� �
pi ;

where i and j are aligned plasmids, ls is the length of the alignment, li and lj
are the total lengths of plasmids i and j, k is the number of alignments
between the plasmids, and pi is the percent identity between the plasmids
for a given alignment. While plasmid length in the data set ranged from
2000 to 7297 bp (mean = 2751 bp), aligned plasmids generally had a
similar length, with 72% between 2000 and 3000 bp.)
Before constructing our networks, we performed a sensitivity analysis to

determine the cut-off for plasmid length to include in our analysis. We
compared the number of plasmids and alignments (total, intralayer, and
interlayer) retained in the data at thresholds for plasmid length
(500–3000 bp in increments of 500 bp) and alignment length (20% of
the shorter plasmid in a given pair and 20% of the threshold). While the
number of intralayer edges was relatively stable at all thresholds, we found
that the number of inter-layer edges retained plateaued at a length
threshold of 2000 bp while there was virtually no effect of the two
alignment thresholds. Based on these results, we restricted our analyses to
plasmid sequences >=2000 bp and alignments that covered >= 20% of
the length of the shortest plasmid in a pair (Supplementary Fig. 7).
Minimum percent identity for alignments was >=70% [30].

Basic network metrics
We calculated each plasmid’s intra-, inter- and total degree as the number
of intra-layer links, inter-layer links, and both, respectively. We tested for
skewness in the distribution of degree centrality and layer links using the
function skewedness in the package moments [79]. We calculated network
density as the proportion between the total number of realized edges
(defined as at least one alignment spanning ≥20% of the length of the
shortest plasmid in a pair), divided by the total number of potential edges.
We calculated the number of potential intra- and interlayers edges, Pintra
and Pinter, respectively, as follows. For intra-layer edges:

Pintra ¼
XC
c

Nc Nc � 1ð Þ
2

� �
;

where Nc is the number of plasmids in cow c, and there are C cows. For
inter-layer edges:

Pinter ¼ N N� 1ð Þ
2

� �
� Pintra;

where N is the number of state nodes (plasmid-layer combinations) in the
network: N ¼ PC

c Nc .

Shuffled networks
We permuted the identity of the cows in which plasmids occur, creating
1000 shuffled networks. The algorithm conserved the distribution of edge
weights in the network and the number and identity of links between
unique plasmids. However, it did not constrain the number of plasmids in a
cow or the number of cows a plasmid could occur in. We calculated the
density and the ratio of inter- to intralayer edges of each shuffled network
as described above for the observed network. We then compared the
intra- and interlayer density and ratio of inter:intra-layer density in the
observed network to the distribution of values for these metrics in the
shuffled networks. To compare module sharing in observed and shuffled
networks we calculated z-scores as

sobsij � sshuffij

SD sshuffij

� � :

Modularity using Infomap
We obtained network partitioning to modules using the infomap algorithm
[54, 80] implemented in the infomapecology R package [56]. In brief,
infomap minimizes a function called the map equation using a modified
and extended Louvain algorithm to partition the network into modules in
a way that minimizes the amount of information needed to describe the
movements of a random walker across the network. Modules indicate
groups of nodes in the network that are more connected to each other
than to other nodes. Infomap is a useful tool for analyzing this type of
network because it explicitly accounts for multilayer network structure, and
is computationally efficient [56]. Because Infomap is based on flow, it is
particularly relevant for this study, which aims to look for signatures of
gene flow [56]. To determine whether observed modularity and flow were
non-random, we applied Infomap with the same parameters as in the
observed network on each of the shuffled networks (described above) and
compared the distribution of modularity, module characteristics, flow, and
characteristics of the largest modules in the shuffled networks to the
observed network.

Statistical analyses
When comparing measures of an observed network to that obtained from
shuffled networks, we calculated p values as the proportion of shuffled
networks with values greater or lower than the observed value. Comparing
observed to shuffled networks in this way is a well-established and
common practice in network ecology [81–83]. We calculated all correla-
tions and their p values using the function cor.test in the stats package of
program R. We used Kendall’s tau to measure all correlations due to non-
normality of the data and the presence of outliers. We ran Mann-Whitney-
Wilcoxon tests using the function wilcox.test in the stats package of
program R with “paired” set to “false.”
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Agent-based transmission model
We used Gillespie’s direct method [84] to obtain exact stochastic
simulations for our model of gene dispersal. We considered two events.
First, the copy of the gene in any state node (a plasmid in a given layer)
could be lost at random. Gene loss was determined by a per capita loss
rate, and therefore for each loss event, we chose one gene for removal
among the state nodes containing the gene, with equal probability.
Second, any pair of state nodes could be in contact and spread the gene
from one state node to another. For simplicity, we considered a constant
contact rate (contacts per time unit) across all state nodes. For each
contact event, the algorithm selects two state nodes at random. If one of
the state nodes contains the gene, it can transmit to the other state node
with a probability equal to the similarity between both state nodes. This
explicitly incorporates network structure into the model. Each simulation of
the model corresponds to a single realization of this stochastic process. For
each of the 20 starting plasmids, we ran the model for 1000 unitless time
steps 300 times for each unique combination of contact and loss rate.

Code
All data management and analysis were conducted in R v.4.1.1 [85].

DATA AVAILABILITY
All data files and R scripts used for statistical analysis and generating figures for this
work are available on the GitHub repository:
https://github.com/Ecological-Complexity-Lab/Plasmid_multilayer_networks
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