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Chapter 5

Retina as a Model to Study In Vivo Transmission of
α-Synuclein in the A53T Mouse Model of Parkinson’s
Disease

Najiba Mammadova, Thierry Baron, Jérémy Verchère,
Justin J. Greenlee, and M. Heather West Greenlee

Abstract

Parkinson’s disease is a neurodegenerative disorder characterized by accumulation of misfolded α-synuclein
within the central nervous system (CNS). Retinal manifestations have been widely described as a prodromal
symptom; however, we have a limited understanding of the retinal pathology associated with Parkinson’s
disease. The strong similarities between the retina and the brain and the accessibility of the retina has
potentiated studies to investigate retinal pathology in an effort to identify biomarkers for early detection, as
well as for monitoring the progression of disease and efficacy of therapies as they become available. Here, we
discuss a study conducted using a transgenic mouse model of Parkinson’s disease (TgM83, expressing
human α-synuclein containing the familial PD-associated A53T mutation) to demonstrate the effect of the
A53T α-synuclein mutation on the retina. Additionally, we show that “seeding” with brain homogenates
from clinically ill TgM83 mice accelerates the accumulation of retinal α-synuclein. The work described in
this chapter provides insight into retinal changes associated with Parkinson’s disease and identifies retinal
indicators of Parkinson’s disease pathogenesis that could serve as potential biomarkers for early detection.
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1 Introduction

Parkinson’s disease (PD) is a degenerative disorder of the nervous
system, characterized by two prominent disease processes: progres-
sive degeneration of dopaminergic neurons of the substantia nigra
pars compacta (SNpc) in the midbrain resulting in motor deficits
(e.g., tremors, bradykinesia, and rigidity), and the accumulation of
intraneuronal Lewy bodies, that contain misfolded α-synuclein [1–
3]. Epidemiological data over the past several decades has reported
a dramatic increase in the occurrence of Parkinson’s disease, con-
cluding that the worldwide burden of PD has more than doubled
from 2.5 million patients in 1990 to 6.1 million patients in 2016
[4]. This has motivated researchers to identify sensitive and reliable
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methods to screen individuals at risk prior to permanent damage.
Although classically considered a movement disorder, emerging
evidence reports a broad spectrum of non-motor manifestations
associated with PD (e.g., cognitive dysfunction and hallucinations,
sleep and mood disorders, gastrointestinal dysfunction, hyposmia,
visual impairments, etc.) that occur decades before the onset of the
hallmark motor symptoms [5–8]. Among these, hyposmia and
visual dysfunction (impaired visual acuity, contrast sensitivity, and
deficits in color vision have been most widely reported in PD [9–
12], with ~96% of PD patients reporting a reduced ability to smell
or detect odors, and ~ 80% of PD patients reporting some extent of
visual deficit [10, 13–15]. In the present study, we used a transgenic
mouse model (TgM83) to investigate the underlying retinal
changes that may contribute to the visual manifestations experi-
enced by PD patients. Moreover, we aimed to identify retinal
indicators of PD pathogenesis that could serve as potential biomar-
kers for early detection as well as for monitoring the effect of
therapeutic interventions as they become available.

Visual manifestations have been widely reported as a preclinical
phase in several neurodegenerative processes including Parkinson’s
disease and other synucleinopathies (dementia with Lewy bodies
(DLB) and multiple system atrophy (MSA)), described to occur at
least 10 years before the cardinal motor symptoms [9–19]. Addi-
tionally, several reports describe the accumulation of misfolded
α-synuclein aggregates in the retinas of postmortem PD patients
[20–24]. However, there is a scarcity of information on the distin-
guishing events that cause retinal change. The strong similarities
between the retina and the brain has led to an increase of studies
investigating retinal pathology resulting from PD, particularly
using existing mouse models, both toxin-induced and genetic,
that can recapitulate varying aspects of the human disease including
the progressive accumulation of α-synuclein throughout the central
nervous system (reviewed in [25]). Specifically, several studies have
described α-synuclein phosphorylated at serine-129 (pSer129)
[23, 24] in the retinas of PD patients. Phosphorylation of
α-synuclein at serine 129 is one of the several post-translational
modifications to α-synuclein known to occur in PD. Studies attri-
bute this post-translational modification to the increased formation
and self-propagation of α-synuclein aggregates, and Lewy body
formation [26–30]. While the self-propagating ability of patholog-
ical a-synuclein (pSer129) has been widely postulated [1, 26, 31–
47], more conclusive evidence for the presence and spread of
α-synuclein in the retina and its correlation to the cerebral
a-synuclein burden is lacking. In a recent report, we described
retinal pathology in a transgenic mouse model (TgM83) expressing
the human Ala53Thr α-synuclein mutation. Specifically, we demon-
strated that the accumulation of α-synuclein (pSer129) in retinas of
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5-month-old transgenic mice is accelerated upon “seeding” or
intracerebral inoculation with brain homogenate from clinically ill
transgenic mice [48]. This study is based on in vivo experiments
using the TgM84 mouse model that demonstrated that “seeding”
with an inoculum derived from the brain of clinically ill mice results
in acceleration of α-synuclein-associated disease and shortening of
survival time [36]. Our studies use the TgM83 mouse model to
demonstrate the effect of α-synuclein propagation in the central
nervous system, on the progression of retinal changes associated
with the A53Tmutation, specifically the accumulation of misfolded
α-synuclein. This in vivo model provides insight into the effect of
Parkinson’s disease on the retina and warrants further exploration
into the potential use of retinal α-synuclein as a biomarker for early
detection.

2 Methods

2.1 In Vivo Animal

Experiments

1. For these studies, we used TgM83 transgenic mice, that
express the A53T-mutated human α-synuclein protein (B6;
C3H-Tg[SNCA]83Vle/J, RRID:MGI:3603036, The Jackson
Laboratory, Bar Harbor, ME, USA), and spontaneously
develop motor deficits between 8 and 16 months of age.

2.2 Animals 1. Animals include: B6C3H mice (genetic background of the
TgM83 mouse line) at 5 and 8 months of age; TgM83 mice
inoculated with brain homogenate obtained from a 2-month-
old healthy TgM83 mouse; C57Bl/6S mice, presenting a dele-
tion of the α-synuclein locus [49] inoculated with brain
homogenate obtained from a clinically ill TgM83 mouse to
gauge for unspecific toxicity of the inoculum; homozygous
TgM83mice at 5 months of age (corresponding to a preclinical
stage), 8 months of age, and clinically ill animals
(~12–18 months of age); homozygous TgM83 mice inocu-
lated at 2 months of age with brain homogenate obtained
from two clinically ill (12 and 18 months) TgM83 mice, and
euthanized 3 months after inoculation (5 months of age). Eyes
are only collected from the following animals: B6C3H mice at
5 and 8 months of age; TgM83 mice at 5 months of age,
8 months of age, and clinically ill animals; and TgM83 mice
inoculated at 2 months of age with brain homogenate obtained
from two clinically ill (12 and 18 months) TgM83 mice, and
euthanized 3 months after inoculation (5 months of age).
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3 Methods

3.1 Preparation and

Inoculation of Brain

Homogenates

1. Mice are euthanized by an intraperitoneal injection of lethal
dose of sodium pentobarbital. All homogenates are prepared
from half sagittally sectioned brains. Each half is weighed and
placed in a ribolysis tube containing grinding balls. High Salt
(HS) buffer [50 mM Tris–HCl, pH 7.5, 750 mMNaCl, 5 mM
EDTA, 1 mM DTT, 1% phosphatase and protease inhibitor
cocktails] is added to the brain halves to obtain 20% (wt/vol)
homogenates. Brain extract inoculation samples are prepared
using a mechanical homogenizer at 6.0 m/s for 23 sec twice.
After the first 23 sec homogenization, the tubes contained the
homogenates are placed on ice for 2 min before the second 23 s
homogenization cycle.

2. Before brain extract inoculation, mice are anesthetized with a
xylazine (10 mg/kg) and ketamine (100 mg/kg) mixture.
Mice are subjected to intracerebral inoculation (IC) with
20 μL of 1% (wt/vol in glucose 5%) brain homogenates
obtained from half of the brain of a clinically ill TgM83
mouse. Mouse brains are stored at �80 �C for Western blot
(WB) analyses, or fixed in buffered 10% formalin for immuno-
histochemical (IHC) studies [50, 51].

3.2 Clinical

Monitoring of Mice

1. Care and housing of mice, as well as ethical approval is
described as per Mougenot et al., 2011 [36]. Mice are moni-
tored daily and clinically examined individually three times a
week to detect any symptoms of TgM83 disease. Indications of
clinical motor disease include: reduced mobility and/or persis-
tent immobility, partial paralysis of the hind leg (e.g., freezing
of a hind limb during spontaneous walking that lasts a few
seconds), and balance impairment. Balance impairment can
be examined by observing the spontaneous mobility of the
mice (e.g., falling after rearing up, gently pushing the mouse
on its side to see if the mouse can recover). These clinical signs
progress to feeding difficulty and subsequent weight loss, pros-
tration and/or hunched back, and general paralysis rapidly
requiring sacrifice of the mouse for ethical reasons. A mouse
is thus considered “clinically ill” as soon as the hind limb
paralysis is detected by two independent observers [50].

3.3 In Vitro Animal

Experiments

1. After mice are euthanized, eyes are enucleated before the brain
has been removed. The eyelids are pulled apart to improve
access to the eyeball surface. Curved forceps are placed under
the globe in the orbit and is used to gently push the eye out of
its socket and grip the globe from underneath without squeez-
ing the globe. The globe is gently moved from left to right and
upward until released from the socket, with the optic nerve still
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attached (seeNotes 1 and 2). The eye globe is transferred into a
Petri dish containing phosphate-buffered saline, after which
the extraocular muscles are gently removed, and a single punc-
ture wound is made into the cornea allowing fixative to pene-
trate the eye tissue. The entire eye is immediately placed into
and fully immersed in 10% formalin for 24 h, then 70% ethanol.
Eye globes are embedded in paraffin and sectioned sagittally at
4-μm onto Superfrost plus glass slides.

2. In the brain and the retina, phosphorylated α-synuclein
(pSer129) was detected by WB and IHC analyses as previously
described [48, 52]. For WB and IHC analyses, pSer129 was
detected with anti-rabbit pSer129 α-synuclein monoclonal
antibody (mAB) (WB 1:1000, IHC 1:300) (see Notes 3–5).

3.4 Representative

Results

1. Survival curves were obtained by Kaplan–Meier method
[52]. There was no statistical significance between survival
times of uninoculated TgM83 mice (435 days old), and
TgM83 mice inoculated with a brain homogenate from a
healthy 2-month-old TgM83 mouse (359 days old)
[36]. There was a significant difference between survival
times of the aforementioned mice and TgM83 mice inoculated
with brain homogenate obtained from two clinically ill (12 and
18 months) TgM83 mice (193 and 182 days old, respectively)
(see Fig. 1a) [36].

2. Western blot analysis of brains from TgM83 mice inoculated
with brain homogenate obtained from two clinically ill (12 and
18 months) TgM83 mice, revealed pSer129 protein expression
as early as 97 dpi (161 days old), while Western blot analysis of
brains from age-matched uninoculated TgM83 mice revealed
no pSer129 (see Fig. 1c) [36]. IHC analysis revealed accumula-
tion of pSer129 in the dorsal raphe nucleus and lateral vestibu-
lar nucleus of 1) M83 mouse (339 days old) inoculated with
brain homogenate obtained from a healthy mouse (2 months
of age), 2) M83 mouse (198 days old) inoculated with brain
homogenate obtained from a clinically ill mouse (12 months of
age) and 3) M83 mouse (328 days old) inoculated with brain
homogenate obtained from a clinically ill mouse (18 months of
age) (see Fig. 1d) [36].

3. Immunohistochemistry and Western blot analysis were used to
detect α-synuclein (pSer129) and total α-synuclein in retinas of
transgenic and control mice (see Fig. 2) [48]. Immunohisto-
chemical analysis of retinas from B6C3H mice at 5 and
8 months of age revealed no pSer129 or total α-synuclein
immunolabeling. In retinas of 5-month-old transgenic mice,
pSer129 immunolabeling was evident only in the outer nuclear
layer. However, pSer129 immunoreactivity was minimal, with
two to three patches of labeling per retinal section. Compared

Mouse Model of Parkinson’s Disease 79



to 5-month-old non-inoculated transgenic mice, retinas of
inoculated 5-month-old transgenic mice revealed marked
pSer129 immunoreactivity detected throughout the inner and
outer retina. Retinas of 8-month-old and clinically ill trans-
genic mice had pSer129 immunolabeling similar to that of

Inoculation

Uninoculated TgM83 (n=20)

TgM83 inoculated with brain of a healthy (2m) mouse (n=11)

TgM83 inoculated with brain of a sick (12m) mouse (n=9)

TgM83 inoculated with brain of a sick (18m) mouse (n=12)

C57BL/6S Δ α-syn inoculated with brain of a sick (18m) mouse (n=10)
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Fig. 1 (a) Survival times of TgM83 mice inoculated with brain homogenates from sick, 12-month-old (red
dotted line) or 18-month-old (red line) TgM83 mice, compared with uninoculated TgM83 (black line) or TgM83
inoculated with a brain homogenate from a 2-month-old healthy TgM83 mouse (blue line). (b) A 161-day-old
TgM83 mouse inoculated with a brain homogenate from a sick TgM83 mouse shows (97 days post-inoculation
[d.p.i.]) paralysis of the hind limbs and impaired rotation to upright posture. (c) Western blot detection of
insoluble pSer129 α-synuclein (α-syn) in brains of uninoculated sick (S) TgM83 mice and in brains of TgM83
mice inoculated with brain homogenates from sick TgM83 mice (1–4). pSer129 α-syn was not detected in
brains of uninoculated healthy (H) (2- or 6-month-old) TgM83 mice. Below each lane, immunodetection of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) using a mouse monoclonal antibody (mAb) [1:10,000]
(Millipore, Molsheim, France) is shown, as well as a figure indicating the age at death of the corresponding
mouse. (d) Immunohistochemical detection of pSer129 α-syn. The right upper photomicrograph attests the
specificity of the labeling. The α-syn pathology is indicated by dystrophic neuritis and labeling of the neuronal
perikarya (upper lane in the raphe nucleus of TgM83 mice which died when 339 or 198 days old). Bars: 16 μm.
Lower panel: diffuse perikaryal inclusions as well as spheroid-like inclusions (arrows) in the gray matter of the
lateral vestibular nucleus were also detected in a TgM83 mouse that died at 328 days old after inoculation
with a brain homogenate from a sick TgM83 mouse or in a TgM83 mouse which died when 339 days old after
inoculation with a brain homogenate from a healthy 2-month-old TgM83 mouse. Bars: 64 μm
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Fig. 2 Accumulation of α-synuclein. (a, b) Retinas of B6C3H mice had no phospho-α-synuclein (p129S)
immunoreactivity. (c–f) Retinas of transgenic mice showed a similar trend, with sparse perinuclear and
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inoculated 5-month-old mice (see Fig. 2g–l). Western blot
analysis of pSer129 and total α-synuclein protein revealed a
similar trend. Retinas of inoculated 5-month-old mice,
8-month-old, and clinically ill mice had significantly more
pSer129 (~two fold compared to control and 5-month-old
transgenic mice; Fig. 2m, n). This result suggests accelerated
accumulation of the pathogenic form of α-synuclein, pSer129,
in the seeded model.

4 Notes

1. In order for the retina to remain intact, mouse eyes must be
enucleated before the brain has been removed. Care must be
taken to ensure that the optic nerve is not damaged during
enucleation. The use of curved dressing forceps makes this
easier. When the curved forceps are placed under the globe in
the orbit to push the eye out of its socket, it is best to grasp the
extraocular muscles/connective tissue behind the globe to
avoid squeezing the globe and damaging the retina [53]. A
30-gauge needle can be used to make a single puncture wound
1–2 mm into the eyeball [53]. Curved Westcott dissection
scissors can be used to remove extraocular muscles and other
connective tissues from the eye globe prior to fixation.

2. For optimum results, eye globes should be fixed in 10% forma-
lin or Bouin’s fixative for 12–24 h.

3. Western blot analysis of pSer129 protein expression in retinas
of transgenic mice was carried out using paraffin-embedded
tissues as per Mammadova et al. 2019 [48]. However, similar
results are anticipated with frozen tissues.

4. For protein extraction from paraffin-embedded retinas for
Western blot analysis, retinal tissues are collected into 1.5 mL
microcentrifuge tubes, and then deparaffinized and rehydrated

�

Fig. 2 (continued) extracellular phospho α-synuclein (p129S) immunoreactivity at 5 months of age, evident in
the inner retina at the stage of clinical disease. (e) Retinas of inoculated mice showed increased α-synuclein
(p129S) immunoreactivity, localized to ONL as well as the inner retina. (g, h) Retinas of B6C3H mice had no
α-synuclein immunoreactivity. (i) Perinuclear and extracellular α-synuclein accumulation first evident at
5 months of age, localized to ONL. (j–l) As disease progressed, α-synuclein accumulation increased in
intensity, distributed throughout the inner retina. (k) Retinas of inoculated TgM83 mice are comparable to
retinas of clinically ill TgM83 mice, with α-synuclein localized to ONL and inner retina. Abbreviations: GCL
ganglion cell layer, INL inner nuclear layer, IPL inner plexiform layer, OPL outer plexiform layer, ONL outer
nuclear layer. Insets: High magnification images of α-synuclein immunoreactivity. Scale bars: 40 μm; insets
15 μm. (m) α-synuclein (pS129) (15 kDA), α-synuclein (15 kDA), immunoreactive bands. (n) Representative
bar graph showing quantitative densitometric analysis of α-synuclein (pS129)/α-synuclein �SD
**P < 0.01 vs. B6C3H and TgM83 (5 m); ***P < 0.001 vs. B6C3H and TgM83 (5 m)
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using xylene, followed by a decreasing ethanol concentration
gradient (100%, 95%, 70%) by incubation at room temperature
in each solution for 10 min. After each incubation, tissue is
pelleted at 14000 � g for 3min, and incubation/centrifuga-
tion is repeated two times. For optimum results, 100 microns
of retinal tissue and at least 500 μL of solution (e.g., xylene or
various concentrations of ethanol) must be used each time to
ensure proper deparaffinization and rehydration. Further detail
has been described by Guo et al. 2012 [54]. Alternatively, the
Qproteome FFPE Tissue kit (Cat No./ID: 37623 Qiagen,
Germantown, Maryland, USA) can potentially be used.

5. Besides immunohistochemistry and Western blot analysis,
detection of disease-associated α-synuclein (pSer129) has
been previously described in the TgM83 mouse model using
an enhanced ELISA technique as per Bétemps et al.,
2015 [51].
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