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Introduction
In a One Health perspective, it is essential to main-
tain a global system of surveillance to better perceive 
and understand transmission events between animals, 
humans, and the environment. These surveillance sys-
tems need to be harmonized and to ensure interoper-
ability between all the data generated so that they may 
be shared among all surveillance players, such as pub-
lic health authorities, research institutions, and labo-
ratories. These systems also involve several scientific 
domains, such as plant pathology or veterinary, medi-
cal, and food safety. The importance of such sharing of 
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Abstract
Background  In the context of pathogen surveillance, it is crucial to ensure interoperability and harmonized data. 
Several surveillance systems are designed to compare bacteria and identify outbreak clusters based on core genome 
MultiLocus Sequence Typing (cgMLST). Among the different approaches available to generate bacterial cgMLST, our 
research used an assembly-based approach (chewBBACA tool).

Methods  Simulations of short-read sequencing were conducted for 5 genomes of 27 pathogens of interest 
in animal, plant, and human health to evaluate the repeatability and reproducibility of cgMLST. Various quality 
parameters, such as read quality and depth of sequencing were applied, and several read simulations and genome 
assemblies were repeated using three tools: SPAdes, Unicycler and Shovill. In vitro sequencing were also used to 
evaluate assembly impact on cgMLST results, for six bacterial species: Bacillus thuringiensis, Listeria monocytogenes, 
Salmonella enterica, Staphylococcus aureus, Vibrio parahaemolyticus and Xylella fastidiosa.

Results  The results highlighted variability in cgMLST, which not only related to the assembly tools, but also induced 
by the intrinsic composition of the genomes themselves. This variability observed in simulated sequencing was 
further validated with real data for six of the bacterial pathogens studied.

Conclusion  This highlights that the intrinsic genome composition affects assembly and resulting cgMLST profiles, 
and that variability in bioinformatics tools can induce a bias in cgMLST profiles. In conclusion, we propose that the 
completeness of cgMLST schemes should be considered when clustering strains.

Keywords  cgMLST, Genome assembly, Bioinformatics tool variability, Data comparability
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data has recently been proven for real-time monitoring 
of outbreaks or pandemics, as highlighted during the 
SARS-CoV-2 pandemic or other recent virus outbreaks 
[1]. Such systems are already used in bacteria monitoring 
systems to identify the origins and transmission routes of 
antimicrobial resistance [2, 3], or to monitor food-associ-
ated pathogens. Recommendations have thus been pro-
posed to facilitate collaboration around data [4, 5]. These 
recommendations suggested in particular (i) defining 
quality criteria so as to ensure data trustworthiness, and 
(ii) providing guidelines and reference analytical tools for 
data processing while limiting the impact of their storage. 
To implement these recommendations, current systems 
for bacteria surveillance are primarily based on typing 
results [6].

The reference method for bacterial typing is multi-
locus sequence typing (MLST), based on seven house-
keeping genes. It was developed for the first time in 1998 
with Neisseria meningitidis and since then, the number 
of schemes available in the PubMLST database (Pub-
lic database for molecular typing and microbial genome 
diversity) has steadily increased to over 130, demonstrat-
ing the ongoing growth and diversification of this typing 
method over time [7]. In the last few decades, the devel-
opment of whole genome sequencing (WGS) has opened 
the path to gene-by-gene approaches to extend the MLST 
concept to all genes composing the core genome (cg) of 
bacterial species. This method, called cgMLST, is more 
discriminating than MLST due to its higher genome cov-
erage level.

Zoonotic and foodborne pathogen surveillance based 
on these new approaches is increasingly, and most of 
the surveillance initiative tools published recently rec-
ommend using cgMLST outputs for comparing bacte-
rial strains and identifying clusters of genetically-related 
strains (PulseNet USA [8], GenoSalmSurv [9], European 
Food Safety Authority (EFSA) [10]). Recently, an out-
break caused by Listeria monocytogenes ST1247 was 
investigated in five European countries (Denmark, Esto-
nia, Finland, France, and Sweden), using the cgMLST 
approach [11]. In this study, only three allelic differences 
were found out of the 1744 loci detected from the 1748-
loci cgMLST scheme [12]. Likewise, this method was 
used to investigate the global outbreak caused by Salmo-
nella Typhimurium ST34 in chocolate-based products 
between 2021 and 2022. Cases were reported in 12 Euro-
pean Union countries, the UK, Switzerland, USA, and 
Canada [13].

Unlike methods based on read mapping, a variant that 
requires a reference genome to which reads are aligned, 
the gene-by-gene approach is reference-free, enabling 
better consideration of genetic variability among bacte-
rial strains. Moreover, cgMLST appears to be less affected 
by homologous recombination than Single Nucleotide 

Polymorphims (SNP) analysis, and can be used to inves-
tigate outbreaks from highly recombinant pathogens 
like Pseudomonas aeruginosa [14], Salmonella enterica 
[15] or Xylella fastidiosa [16]. Furthermore, it is straight-
forward to establish nomenclature systems that can be 
shared among multiple institutes and/or analyses, facili-
tating the creation of a global monitoring system. These 
schemes and sequence variants are publicly available in 
several databases, e.g., PubMLST (https://pubmlst.org/), 
BIGSdb-Pasteur (https://bigsdb.pasteur.fr), EnteroBase 
(https:/​/entero​base.wa​rwic​k.ac.uk/), cgmlst.org ​(​​​h​t​t​p​s​:​/​/​
c​g​m​l​s​t​.​o​r​g​/​n​c​s​​​​​) from Ridom SeqSphere and Chewie-NS 
(https:/​/chewie​-ns.rea​dthe​docs.io/en/latest/) [17]. There 
are different approaches to calling alleles and obtain-
ing cgMLST profiles. One of them maps raw reads to a 
scheme to call genes, as implemented in Mentalist [18]. 
A second approach, implemented in ChewBBACA [19], 
is assembly-based, and requires genome assembly before 
calling cgMLST profiles. Various systems use it, like 
INNUENDO [10]. ChewBBACA is also implemented in 
an interoperable system shared by the European Food 
Safety Authority (EFSA) and the European Centre for 
Disease Prevention and Control (ECDC), which was set 
up in 2019 to analyze foodborne outbreaks caused by 
Salmonella enterica, Listeria monocytogenes, and Esch-
erichia coli [5].

De novo assembly is a crucial step after sequencing to 
reconstruct the genomes of pathogens. Several pipelines 
designed to harmonize genome assembly have been pub-
lished based on specific pathogens or institutes. These 
pipelines use de novo assembly tools like SPAdes [20], 
Shovill [21] or Unicycler [22], and short reads as the data 
input. SPAdes is a bacterial genome assembly algorithm 
based on de Bruijn graph published in 2012. Shovill and 
Unicycler are two assembly tools based on SPAdes that 
offer improvements over this first tool. Shovill, developed 
in 2016, is a pipeline designed to optimize the assembly 
runtimes by adding steps before and after SPAdes step. 
Unicycler, developed in 2017, is also an enhancement of 
SPAdes aimed at reducing the number of misassemblies 
at the end of the assembly process. One of the signifi-
cant challenges in bacterial genome assembly is the use 
of short reads produced by next generation sequenc-
ing (NGS). Indeed, NGS tools can be easily impacted 
by genome composition, for example the occurrence of 
repeated sequences such as insertion sequences (IS), 
variable number tandem repeats (VNTRs), or homopol-
ymers, which are very difficult to assemble. In addition, 
regions that vary greatly in GC composition have a poor 
sequencing coverage, leading to genome fragmentation 
[23]. Few is known about the impact of these genomic 
features on these different assembly tools.

The aim of this study was to evaluate the impact of 
assembly tools on bacteria to highlight the need for 

https://pubmlst.org/
https://bigsdb.pasteur.fr
https://enterobase.warwick.ac.uk/
https://cgmlst.org/ncs
https://cgmlst.org/ncs
https://chewie-ns.readthedocs.io/en/latest/
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pipeline harmonization and to share cgMLST profiles 
with the EFSA/ECDC system, where cgMLST analyses 
are performed with ChewBBACA. Twenty-seven bac-
terial species corresponding to significant pathogens 
from a One Health perspective were examined in this 
study. These species encompass foodborne, plant, and 
animal pathogens. We compared the three tools most 
frequently used for assembly purposes: SPAdes [20], 
Unicycler [22] and Shovill [21]. The effect of the quality 
and depth of sequenced reads was evaluated on cgMLST 
results. The repeatability and reproducibility of analyses 
were also tested using both in silico and in vitro sequenc-
ing. We observed a major bioinformatics variability in 
the cgMLST profiles obtained, and therefore proposed 
recommendations to enhance interoperability between 
genomic results and to decrease the risk of excluding 
strains linked to each other in epidemic clusters.

Materials and methods
Experimental scheme
The genomes of 27 bacterial pathogen species—Bacillus 
cereus, Bacillus thuringiensis, Bacillus cytotoxicus, Bru-
cella melitensis, Burkholderia mallei, Campylobacter 
spp., Citrobacter spp., Clostridium botulinum, Clostrid-
ium difficile, Clostridium perfringens, Escherichia coli, 
Klebsiella aerogenes, Leptospira interrogans, Listeria 
monocytogenes, Mycobacterium bovis, Mycobacterium 
tuberculosis, Neisseria meningitides, Pseudomonas aeru-
ginosa, Ralstonia solanacearum, Salmonella enterica, 
Staphylococcus argenteus, Staphylococcus aureus, Taylo-
rella equigenitalis, Vibrio cholera, Vibrio parahaemolyti-
cus, Xylella fastidiosa, and Yersinia enterocolitica were 
used to perform these analyses (Table S1). The species 
were chosen according to the interest in these pathogens 
for public health, and their risk in food safety. A mini-
mum of five circularized genomes were randomly chosen 
from the public NCBI database, resulting in 138 genomes 
being analyzed. All strain accession numbers are avail-
able in the supplementary data (Table S1).

The experimental design is presented in Fig.  1a. The 
short read paired end of 150 bp was simulated using ART 
v. 2.3.7 [24] to mimic Illumina sequencing. Phred quality 
scores (Q) for Illumina sequencing are guaranteed to be 
at least 95% above Q30 for all platforms, such as MiSeq, 
HiSeq and NextSeq. Two quality scores were then simu-
lated: greater than Q40 to simulate high-quality reads and 
less than Q40 to estimate the impact of low-quality reads. 
The depth of sequencing can also differ depending on the 
multiplexing and sequencing platforms chosen. Because 
sequencing depth can affect genome assembly results, 
five different depths were simulated: 25x, 50x, 75x, 100x 
and 150x. The reproducibility of assembly, tested by com-
paring assembly following independent read simulations 
and cgMLST typing, was evaluated for three different 

simulated datasets of high-quality reads. Thus, a total of 
2800 reads were simulated, with each genome undergo-
ing 20 simulations. Read simulations were verified using 
fastp v. 0.20.1 [25].

Real dataset
In vitro sequencing data were used to validate simulation 
results for six bacterial species. The experimental design 
is presented in Fig. 1b. We used 28 different strains: five 
for Bacillus thuringiensis, five for Listeria monocyto-
genes, five for Salmonella enterica, five for Staphylococ-
cus aureus, four for Vibrio parahaemolyticus, and four for 
Xylella fastidiosa. (Table S2). DNA was extracted from all 
these strains and sequenced independently twice. Qual-
ity was assessed and reads were trimmed using fastp v. 
0.20.1 [25]. Finally, a total of 56 sequencing results were 
analyzed.

Assembly
In order to evaluate the impact of assembly tools on 
cgMLST typing, three tools were selected: SPAdes 
v.3.14.1 [20], Shovill v.1.0.9 [21], and Unicyler v.0.4.8 
[22] using default settings. All the simulated and real 
sequenced reads were assembled with these three tools. 
To validate the repeatability of genome assembly by com-
paring assemblies obtained with the same tool and the 
same dataset simulation, each tool was used indepen-
dently three times on high-quality simulated reads with 
a Phred score above 40 and a depth exceeding 75x. Real 
sequenced reads were also assembled independently 
three times. In all, 12,558 assemblies (138 genomes x 2 
read quality simulations x 5 sequencing depth x 3 repli-
cates for good quality of reads and for 75x, 100x and 150x 
of depth x 3 tools) were generated for simulated data and 
504 assemblies for in vitro data (28 strains sequenced in 
duplicates, and analyzed thrice by 3 assembly tools).

Typing
All assemblies listed in Table S1 (n = 140) were analyzed 
to generate the corresponding ST using mlst v2.23.0 and 
cgMLST profiles using chewBBACA v. 2.8.5, as recom-
mended by the EFSA/ECDC system. Whenever pos-
sible, we used publicly available schemes from cgmlst.
org or Big-SDB (Table S3). For Taylorella equigenitalis 
and Xylella fastidiosa, unpublished schemes were used 
to obtain cgMLST profiles with chewBBACA. The EFSA/
ECDC system recommends using chewBBACA v. 2.8.5 or 
more recent versions [5]. In our study, cgMLST profiles 
were computed using chewBBACA v. 2.8.5 tools after 
assembly annotation using Prodigal [19].
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Assembly quality parameters and visualization of cgMLST 
results
In order to compare assembly quality, four parame-
ters from Quast results were analyzed [26]. To evaluate 
genome fragmentation, we compared contig numbers, 
N50 and largest contig sizes in all the assemblies. To 
assess assembly truthfulness, the number of misas-
semblies were detected by comparison with the initial 
genome and NGA50.

For each strain of all 27 species, assembly results were 
aligned with minimap2 [27] implemented in Quast to the 
initial reference genome used for reads simulation. Align-
ment was used to visualize contig fragmentation and 
evaluate assembly reproducibility and repeatability. The 
python library (seaborn v. 0.11.2 [28] and Circos v. 0.1.3 
[29]) were used for all visualizations.

The cgMLST profiles of simulated datasets were com-
pared by computing the allelic differences between 

genomes from NCBI and assembly results with Grape-
Tree v. 2.1 [30] after normalization. To obtain a com-
pleteness percentage for each scheme, this normalization 
step focused on the gene number in the scheme for each 
species analyzed (Table S3). The completeness was cal-
culated on the basis of genes found by cgMLST analysis 
compared with the total number of genes in each scheme. 
The cgMLST results from real data were analyzed using 
the minimum spanning tree calculated with GrapeTree 
[30] and the MSTreeV2 method. These trees were visual-
ized using the GrapeTree web application (achtman-lab.
github.io/GrapeTree/MSTree_holder.html).

Data analysis
Analysis were performed on a linux server (Ubuntu 
20.04.6 LTS) with 190 processors (Intel(R) Xeon(R) Gold 
6348 H CPU @ 2.30 GHz) and 700GB RAM. Steps were 
parallelized with the help of Snakemake (v 7.24.2) to 

Fig. 1  Representation of our study’s experimental design a. Experimental design for simulated data. From circularized reference genome, sequencing 
was simulated. Quality parameters, including read quality and sequencing depth, were assessed. Reproducibility was evaluated, only on high read quality, 
through three simulated read datasets, from same reference genomes. Then, 20 raw reads were obtained for on genome. Each raw reads were assembled 
using three assembly tools: (SPAdes, Shovill and Unicycler). The repeatability of each assembler was tested with three repetitions of an assembly. From 
each genome, 38 assemblies were obtained ; b. Experimental design for real data. Two independent DNA extractions from each strain were sequenced 
independently. The three assemblers were compared for each sequencing dataset, and repeatability was assessed through three repetitions of an as-
sembly. Finally, 18 assemblies were obtained per strain
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optimize jobs computing, and tools were managed using 
Anaconda environment (https://www.anaconda.com/). 
All assembly steps were paralyzed on 4 cores using tools 
specific options, and chewBBACA was performed for 
every species, dataset and assembly tools on a single 
core. Runtimes of steps varies according to the studied 
pathogens and the size of their genomes, as well as the 
complexity of cgMLST schema. The median runtime per 
species of main tools compared is reported in Supple-
mental table (Table S5). All scripts are available (SPAAD-
ANSES/BenToAs (github.com)).

Results
Evaluation of assembly reproducibility according to 
sequencing quality and depth using simulated data
A key requirement for sharing data between interoper-
able surveillance systems is to evaluate the repeatability 
and reproducibility of analysis and to propose quality 
criteria for data inclusion. The assembly tools chosen 
(SPAdes, Unicycler and Shovill) were selected because 
they have been frequently used in recently published 
workflows dedicated to bacterial WGS. We evaluated 
the impact of read quality on sequencing simulations for 
27 bacterial species, and observed that poor data qual-
ity (Q < 40) decreases the quality of assembly: Assem-
blies were impossible to draft with Shovill, because the 
tool did not accept input data, or were shorter and more 
fragmented with SPAdes and Unicycler (Supplementary 
data S1). For Vibrio parahaemolyticus, the maximum 
number of contigs was 80 with high-quality data (Q > 40) 
but increased to 120 with poor-quality data. For some 
species, such as Bacillus cereus, Clostridium perfringens, 
Taylorella, Mycobacterium tuberculosis, and Ralstonia 
solanacearum, some genome parts were even missing 
from the final assembly obtained with a poor read qual-
ity (Supplementary data S2), in position 0 Mb for Bacil-
lus cereus, 0.1 Mb for Clostridium perfringens, 4.0 Mb for 
Mycobacterium tuberculosis, and 2.8  Mb for Ralstonia 
solanacearum.

Furthermore, the poor quality of reads also increased 
genome misassemblies compared with results obtained 
with a high read quality. Indeed, in Klebsiella aerogenes, 
at a depth of 75x, the maximum percentage of misassem-
blies was 40% with poor-quality reads whereas with high-
quality reads this percentage would drop as far as 0%. 
For example, in Mycobacterium bovis, there were 20% of 
misassemblies with poor-quality reads vs. 0% with high-
quality reads; in Neisseria meningitides these figures were 
40% (poor quality) vs. 20% (high quality); in Staphylococ-
cus argenteus they were 20% (poor quality) vs. 0%; and 
in Bacillus cereus, 20% (poor quality) vs. 7%. For Clos-
tridium perfringens, the rate of misassemblies obtained 
with a poor read quality could reach 60% in some assem-
blies. For other species such as Campylobacter spp., 

Listeria monocytogenes, Escherichia coli or Vibrio chol-
erae, assembly results appeared to be less affected by a 
poor read quality (Supplementary data S1).

When we compared the impact of various sequencing 
depths, we observed an optimal threshold at 75x. At this 
value, parameters representing high-quality assembly are 
maximized, i.e., the number of contigs and misassem-
blies decreases, and both N50 and total length increase. 
Mahn-Whitney tests used to compare the four-parame-
ter distribution obtained at different sequencing depths 
were significant (Table S4). Results with 150x and 100x 
were identical. When comparing 25x with 100x sequenc-
ing depth, contig number distributions were significantly 
different for 10/27 species, N50 distributions were sig-
nificantly different for 21/27 species, misassemblies for 
25/27 species, and largest contig for 16/27 species. For 
50x, no difference was observed in contig number, N50 
and largest contig, while misassembly distributions were 
different for 10/27 species. For 75x, no difference was 
observed in contig number, N50, and largest contig, 
while misassembly distributions were different for 6/27 
species. Therefore, for the subsequent analyses, we pres-
ent results derived from high-quality reads at a depth of 
75x (Supplementary data S3).

Comparison of assembly tools with a high read quality and 
sufficient depth using simulated data
To determine which tool performs better in genome 
assembly, SPAdes, Shovill and Unicycler were compared 
using simulated sequencing data with a high quality and 
mean depth of 75x. Firstly, we observed a major differ-
ence in tools runtime as Shovill is the fastest tool with 
a median runtime of 15  min per genome assembly and 
Unicycler the longest with a median runtime of 42  min 
for each assembly ( Table S5). Our results indicated that 
assembly repeatability depends on the tools but seems to 
be also genome-dependent. An alignment of the gener-
ated assemblies to the reference used for the sequenc-
ing simulation revealed that both Shovill and Unicycler 
performed better for Listeria monocytogenes and Ralsto-
nia solanacearum than for most of the 27 bacterial spe-
cies (Fig.  2a). Interestingly, these tools fragmented the 
genome into similar genomic regions, which seem to cor-
relate with variations in GC content across the genome. 
However, assembling the genome of Mycobacterium 
bovis and Xylella fastidiosa with the same assembly tool 
led to different results (Fig. 2b). Specifically, for these two 
species, the assembly differed for each sequencing sim-
ulation dataset (i.e., read simulations obtained from the 
same genome).

https://www.anaconda.com/
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Impact of assembly tools on cgMLST profiles using 
simulated data
Once the optimum quality criteria for sequencing were 
determined, the impact of cgMLST analyses was evalu-
ated for 23 species for which a cgMLST scheme was 
available. The impact of sequencing quality was also 
studied on MLST, but no differences between the vari-
ous simulations were observed (data not shown), which 

is why the impact on all genes involved in the cgMLST 
scheme was studied. The cgMLST profiles obtained from 
high-quality sequencing (i.e., Q > 40) with sufficient depth 
(i.e., depth = 75X) classified bacterial species into two 
categories based on the allelic difference rates observed 
between the reference genome and the assemblies 
obtained (Fig. 3). Results from SPAdes consistently exhib-
ited higher assembly fragmentation and misassemblies 

Fig. 2  Circos plots of assembled contig alignments to a reference genome used for simulations of high quality read. The GC variation along the genome 
is represented at center of the circle. The three simulated sequencing datasets and the three replicates for each assembly tool are represented (27 as-
semblies per genome) for a depth of 75x. The results from SPAdes are in green, those from Shovill in turquoise, and those from Unicycler in dark turquoise. 
a. Two represent genomes, one of Listeria monocytogenes and one of Ralstonia solanacearum showing identical results between Shovill and Unicycler. b. 
Two represent genomes, one of Mycobacterium bovis and one of Xylella fastidiosa showing different results between Unicycler replicates
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than those obtained with Shovill and Unicycler, and are 
not therefore presented here. The first category (group 
1) comprised 15 out of 23 bacterial species that had less 
than 5% of errors between the reference and the assembly 
obtained. For group 1, results suggested that the choice 
of assembler should vary according to the species stud-
ied (Fig. 3a). Indeed, for Escherichia. coli, Mycobacterium 
tuberculosis, Vibrio cholerae, and Taylorella equigenitalis, 

a significant difference (p-value < 5% for Mann-Whitney 
test) was observed between Shovill and Unicycler results, 
suggesting that Shovill gave cgMLST profiles closest to 
the reference. However, for Neisseria meningitidis and 
Leptospira interrogans, the allelic profiles were closest to 
the reference when Unicycler was used, although no sig-
nificant difference was observed when checked with the 
Mann-Whiney test.

Fig. 3  Violin plot of allelic distribution rates according to the gene number in the cgMLST scheme. The results obtained with Unicycler (red) and with 
Shovill (grey) assemblies were obtained using simulated reads with a Phred score greater than Q40 and a depth of 75x. a: species for which the distribu-
tion of allelic difference rates is less than 5%. b: species for which the distribution of allelic difference rates is greater than 5%. The p-values were calculated 
with the non-parametric Mann-Whitney test, and significance is represented by *
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The second category (group 2) comprised 8 out of 23 
bacterial species for which the number of allelic differ-
ences between the reference and the assembly obtained 
was greater than 5% (Fig.  3b), with a maximum of 30% 
for Salmonella enterica. Within group 2, few differences 
were observed between the results obtained from Sho-
vill and Unicycler assemblies, suggesting that the choice 
of assembly tool may be negligible compared with the 
intrinsic genome composition, except for Campylobacter 
spp. for which a significant difference was observed 
between distribution results from the two tools.

Comparison of cgMLST profiles obtained with different 
sequencing depths using simulated data
Related strains were identified by clustering cgMLST 
profiles obtained with different data quality and depth 
combinations. In open-source surveillance systems or 
applications, various data qualities can be shared with 
the science community with diverse internal sequenc-
ing capacities and/or quality thresholds. To evaluate 
the impact of various sequencing depths on cgMLST 
results, we compared simulated sequencing data associ-
ated with mean depths of 25x, 50x, and 75x. The number 
of allelic differences between reference cgMLST profiles 
and cgMLST profiles obtained significantly increased 
for assemblies with a sequencing depth less than 75x for 
all species belonging to group 1 (Fig. 4a). Only four out 
of 23 bacterial species, all belonging to group 2 previ-
ously described (i.e., greater than 5%), appeared not to 
be impacted by the quality of sequenced data: Bacillus 
cereus, Bacillus cytotoxicus, Bacillus thuringiensis, and 
Vibrio parahaemolyticus (Fig. 4b), as no significant differ-
ence was observed. However, for other species—regard-
less of whether they belong to the first or second group 
previously described—the number of allelic differences 
was significantly higher with poor depth (Q < 40) using 
simulated sequencing data. These results underscored 
the importance of performing genomic typing on har-
monized, high-quality data with a sufficient sequencing 
depth to investigate outbreaks.

Confirmation of reproducibility and repeatability when 
sequencing real data
To confirm the poor repeatability and reproducibility of 
cgMLST results obtained using simulated sequencing 
data and evaluate the impact on real data, we analyzed 
biological replicates of bacterial strains from six species. 
The cgMLST profiles were computed for each biological 
replicate to evaluate reproducibility, and bioinformat-
ics analyses were performed in triplicate to investigate 
repeatability.

The cgMLST profiles obtained using real data showed 
that the results were repeatable between analyses, as 
also observed with simulated sequencing. Indeed, the 

cgMLST profiles resulting from SPAdes and Unicy-
cler assemblies were comparable between each repli-
cate, indicating 100% repeatability, as no distance was 
observed between assemblies obtained from the same 
raw data (Fig.  5). However, poor reproducibility was 
observed between the biological replicates, with dis-
tances observed between the same strains for which raw 
data were provided from two independent extractions. 
This finding suggests that the wet lab part has a major 
impact on cgMLST profiles, despite using the same DNA 
extraction protocol for Salmonella enterica, Staphylococ-
cus aureus, and Xylella fastidiosa. Indeed, only four out 
of 28 strains had identical profile results with Unicycler. 
With Shovill, repeatability seemed to be dependent on 
the species. For instance, for Listeria monocytogenes all 
analyses were 100% identical, whereas for Staphylococcus 
aureus, Vibrio parahaemolyticus, and Xylella fastidiosa 
the strains had different cgMLST profiles resulting from 
distinct assemblies. For Salmonella enterica and Bacillus 
thuringiensis, one and two strains, respectively, gave dif-
ferent cgMLST profiles between analyses, but only one 
gene was systematically affected.

The cgMLST profiles for biological replicates were 
found to be identical for eight out of 28 analyzed strains 
(Fig. 5). These eight strains belong to Bacillus thuringien-
sis (two out of five strains), Listeria monocytogenes (four 
out of five strains), Vibrio parahaemolyticus (one out of 
four strains), and Salmonella enterica (one out of five 
strains). This level of reproducibility was mainly observed 
for the results generated by SPAdes and Unicycler, 
although only the Unicycler results maximized the com-
pleteness of the cgMLST scheme, i.e., more genes in the 
cgMLST scheme were found after Unicycler assembly. 
Conversely, with Shovill, only five strains had the same 
cgMLST profiles for biological replicates (one Bacillus 
thuringiensis, and four Listeria monocytogenes), and only 
four strains gave profiles that were identical to the Unicy-
cler results (one Bacillus thuringiensis and three Listeria 
monocytogenes).

The number of allelic differences between biologi-
cal replicates was found to be elevated (22 allelic differ-
ences between two Listeria monocytogenes replicates or 
184 between two Staphylococcus aureus replicates), sug-
gesting potential ambiguity for closely-related strains 
(Fig.  5). Depending on the species and assembly tools 
used, the number of allelic differences between biologi-
cal replicates varied significantly, ranging from 10 allelic 
differences for Bacillus thuringiensis, to 138 for Salmo-
nella enterica with Unicycler. Results obtained for two 
closely-related strains of Xylella fastidiosa subsp. multi-
plex, both belonging to ST6 based on the MLST of seven 
housekeeping genes (Amandine Cunty, personal commu-
nication), were mixed for cgMLST results, whereas they 
were found to be distinguishable in SNP analyses (data 
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not shown). These results suggested that for outbreak 
investigations using this method, it may be challenging to 
discriminate the strain responsible for the outbreak and 
consequently determine its source.

Discussion
cgMLST typing is one of the most widely used genomic 
methods for surveillance of bacterial pathogens. Our 
study aimed to investigate how the assembly step influ-
ences cgMLST profiles. Our results indicated that 
assembly-based cgMLST analyses, considering the entire 
scheme, may vary depending on the assembly method 

Fig. 4  Violin plot of distribution rates of allelic differences to genes number in the cgMLST scheme. Results obtained from simulated data with a Phred 
score greater than Q40 and a sequencing depth of 75x in red, or a depth lower than 75x in grey. Shovill was used for assemblies a: for which the distribu-
tion of allelic difference rates is less than 5%. b: for species whose distribution of allelic difference rates is greater than 5%. The p values were calculated 
according to the non-parametric Mann-Whitney test, and significance is denoted by *
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used. This represents a significant limitation for the gene-
by-gene approach in interoperable systems, which aggre-
gates data from various analytical pipelines. However, 
the observed differences, often referred to as false nega-
tives, primarily involve genes that are missing rather than 

allelic differences potentially resulting in different allelic 
combinations.

The results obtained in this study highlight an impact 
of assembly on cgMLST profiles that is greater for par-
ticular bacterial species. Indeed, genomic composition 
may influence assembly quality, leading to possible contig 
fragmentation within a cgMLST gene. Repeat sequences 
such as insertion sequences (IS) or VNTRs can influence 
assembly quality, among other factors. A previous study 
demonstrated that the number of contigs obtained after 
assembly was correlated with the number of repeat ele-
ments in genomes [31]. The variability in GC content can 
also lead to non-reproducible analyses [32] due to biases 
introduced during sequencing, which alter sequencing 
depth in these regions [23]. Moreover, increased variabil-
ity in a genome leads to a higher degree of bias observed 
during sequencing. This bias affects all assembly methods 
using short reads, since the corresponding tools are not 
capable of effectively handling inconsistent sequencing 
depths. Although Unicycler showed better performance 
in reducing misassemblies than SPAdes [22]and Shovill, 
as previously observed [22], it produced higher frag-
mented assembly than Shovill. Finally, as SPAdes seems 
to produce assemblies with poorer quality in most of the 
cases, the choice between Shovill and Unicycler should 
be made according to the parameter to optimize (i.e.: 
reduction of missasemblies or fragmentation).

The ability of a pathogen to capture external DNA by 
homologous recombination can directly impact GC con-
tent in recombination hotspots [33]. Thus, the difficulty 
in assembling genomes could be more pronounced for 
bacterial species with more frequent homologous recom-
bination. Our results revealed two distinct groups with 
less than or more than 5% of allelic differences, respec-
tively. Group 1, for which an allelic variation lower 
than 5% was described, included Listeria monocyto-
genes, Staphylococcus aureus, and Brucella melitensis, 
among others. For these species, mutations were identi-
fied as the primary evolutionary force responsible for 
polymorphism [34–36]. In contrast, within the second 
group—exemplified by Xylella fastidiosa and Salmonella 
enterica—strains had cgMLST results that were signifi-
cantly different from those of the reference, indicating 
that recombination was the main evolutionary force [16, 
37].

In addition to intrinsic genomic composition, our 
results showed that sequencing quality affected cgMLST-
typing. A recent study conducted with four food patho-
gens: Campylobacter spp., Listeria monocytogenes, 
Salmonella enterica, and Escherichia coli, demonstrated 
variability induced by the wet lab part of WGS analy-
ses [38]. In our study, we observed that bioinformatics 
analyses could also introduce variability in results. In a 
precedent study based on read simulations, the authors 

Fig. 5  Minimum spanning tree (MST) obtained from cgMLST profiles 
using real data. From left to right: results from SPAdes, Shovill and Unicy-
cler. Each color represents one strain, for which two biological replicates 
were performed; the circle size indicates the number of assemblies shar-
ing the same cgMLST profile, and allelic differences are indicated on the 
branches. The completeness value corresponds to the percentage of the 
gene scheme used to perform analyses
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proposed a depth threshold at 50x based on analyses 
carried out on food pathogens Escherichia coli, Listeria 
monocytogenes, and Salmonella enterica [38]. It should be 
noted that the analyses were conducted on a single strain 
per species, using a single tool (SPAdes) to compare typ-
ing results. However, by increasing the number of strains 
and the diversity of species investigated, our results 
showed that the quality of assembly obtained from 50x 
affected the typing result, and this bias decreased with 
depths equal to or greater than 75x. In the global moni-
toring systems, the diversity analyzed is even greater, and 
it is essential to evaluate these criteria for several distinct 
genomes per species. For this reason, we extended the 
study to 27 pathogens and included several genomes per 
species, allowing us to evaluate both the intra- and inter-
species variability. This is why we proposed a minimum 
depth threshold of 75x for all pathogens.

Our results also showed that wet lab and bioinfor-
matic variabilities can artificially increase the distance 
between related strains and thus impact outbreak inves-
tigations, potentially resulting in false negatives with 
unrelated strains. Indeed, when analyzing an epidemio-
logical cluster, it is crucial to identify both the strains 
within the cluster and those excluded. This is based on 
a computation of allelic distance between strains (i.e., 
the number of differences between two profiles). Below 
a specific threshold, strains are considered related [39, 
40]. Thresholds for cgMLST clustering have been pro-
posed for several bacterial species, including Listeria 
monocytogenes [39], Escherichia coli [41], Staphylococ-
cus aureus [42], and Pseudomonas aeruginosa [43], and 
several methods to estimate them have been developed 
based on modeling [39] or nonparametric statistics [40]. 
However, in monitoring systems, such as Chewie-NS or 
GenoSalmSurv, the thresholds are applied exclusively to 
allelic differences, with the number of undiscovered loci 
frequently not taken into consideration. Yet, as we have 
shown in this study, the genome quality can highly affect 
the completeness of cgMLST results (i.e., the number 
of genes that are found during analysis). This parameter 
increases the weight for allelic differences. For example, 
the established threshold for Staphylococcus aureus is 24 
different alleles to define a cluster of related strains [42], 
with a complete cgMLST scheme comprising 1861 genes. 
However, our results were obtained using only 1005 
genes. So, based on the reduction in the scheme’s com-
pleteness, the threshold should be reduced to 13 different 
alleles for this specific clustering analysis.

Consequently, for outbreak investigations, it may be 
beneficial to include the value of scheme completeness 
(as defined by Palma et al. (2022) [44]), and to propose 
quality criteria, which maximizes this value in monitoring 
systems. Other parameters—such as homologous recom-
bination and GC content—could be taken into account 

by a gene-by-gene approach to scheme definition, as the 
GC bias could lead to major genome fragmentation in 
assembly analyses. However, these propositions should 
be balanced against the need to consider some of the evo-
lutionary history of outbreaks, given that GC and recom-
bination represent horizontal gene transfers (HGTs). Yet, 
these transfers are very important for the evolution of 
virulence among bacteria, as shown for Yersinia entero-
colitca [45]. As recently proposed by Duval et al. (2023)., 
these thresholds should not be defined by species but 
rather by either outbreak, taking into account evolution-
ary parameters (such as mutation, duration, etc.) spe-
cific to outbreaks [39], or by specific lineages that could 
have a specific evolutionary mechanism (such as being 
highly clonal) compared with other lineages. Further-
more, the development of assembly-free methods like 
SNP approaches at pangenome level could facilitate out-
break investigations using the pangenome graph method. 
In this study, only the benchmark of the assembly-based 
cgMLST method was performed, as this method is 
implemented in the EFSA system. However, other meth-
ods based on raw reads are available, as such as Mental-
ist ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​W​G​S​-​T​B​/​M​e​n​t​a​L​i​S​T​/​t​r​e​e​/​m​a​s​
t​e​r​​​​​) and were compared on Listeria monocytogenes [44]. 
They show, as previously observed, that the tool used for 
cgMLST analysis have a significant impact on profiling, 
and that assembly-free tools can outperformed assembly-
based tools like EFSA system recommended tool ChewB-
BACA. However, it could be interesting to investigate 
if reads quality and quantity affect these assembly-free 
approaches as well as they affect ChewBBACA output 
and if there is significant differences regarding pathogens 
[4].

Conclusion
Our study assessed the bioinformatic variability induced 
in bacterial typing analyses using the cgMLST method. 
By including foodborne and clinical pathogens, and using 
simulated and real data, our findings led us to propose 
new practices when implementing this method in sur-
veillance systems, such as integrating the notion of com-
pleteness for outbreak investigation, and establishing 
minimum quality criteria for sequencing.

Consequently, our study allows us to establish some 
recommendations for cgMLST analyses on genome 
assembly using ChewBBACA based on the identified 
parameters that affect the most cgMLST results:

 	• Use sequencing data with at least 75x depth ;
 	• Take into account the scheme completeness in 

outbreak investigation to ensure quality of reporting 
of relative strains using a predetermined reference 
threshold of pairwise allele differences ;

https://github.com/WGS-TB/MentaLiST/tree/master
https://github.com/WGS-TB/MentaLiST/tree/master
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 	• Transform allelic profiles with hash script in order 
to facilitate data comparability and sharing, as well 
as standardize allelic distances as nomenclature of 
missing genes and various alleles are harmonized 
independently of an international reference database.
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