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A B S T R A C T

We propose a multipathogen Quantitative Microbiological Risk Assessment (QMRA) model to estimate the risk of
foodborne illness from bacterial pathogens in raw milk soft cheese. Our work extends an existing QMRA model
for pathogenic Shiga toxin-producing Escherichia coli (STEC) (Basak et al.,under review; Perrin et al., 2014) by
incorporating the effects of Salmonella and Listeria monocytogenes. This multipathogen model integrates microbial
contamination of raw milk at the farm level, as well as the growth and survival of these bacteria during cheese
fabrication, ripening, and storage. The public health impact of multipathogen risk associated with raw milk
cheese consumption is assessed using Disability-Adjusted Life Years (DALYs). The model evaluates intervention
strategies at both pre- and post-harvest stages to estimate intervention costs. Furthermore, it tests various sce-
narios of these strategies and optimizes intervention parameters to minimize multipathogen risk and associated
costs. This article discusses challenges in QMRA model validation, emphasizes model limitations, and explores
future perspectives for improvement.

1. Introduction

Microbiological food safety is a major challenge for the food sector
(see, e.g., Plaza-Rodriguez et al., 2018). In this context, the microbio-
logical food safety community-including food authorities, food in-
dustries, and food research institutes-have invested research efforts into
the field of Quantitative Microbial Risk Assessment (QMRA). The aim is
to establish risk-based control measures (see, e.g., Koutsoumanis and
Aspridou, 2016). QMRA is a part of microbial risk analysis, which in-
volves risk assessment, risk management, and risk communication
(World Health Organization, 1997).

Microbial risk assessment enables the evaluation of the likelihood of
illness caused by pathogenic microorganisms and environmental factors
that impact microbial growth. According to Commission (1999), the
framework for executing a QMRA for pathogens is built on several
foundational components: hazard identification, exposure assessment,
hazard characterization, risk characterization, and risk management
options.

Hazard identification entails recognizing microbiological agents-
such as bacteria, pathogens, and viruses-that exist in food and may

lead to adverse health effects. This identification process is initiated
after the problem formulation (Ungaretti Haberbeck et al., 2018). It
involves delineating a list of microbial pathogens associated with the
risk assessment in question.

Exposure assessment identifies and characterizes the pathways of the
exposure to the microbial hazards and quantifies the exposure levels to
estimate the magnitude of intake via consumption of a given food
commodity.

Hazard characterization then converts these levels of exposure into a
probability, representing the likelihood of adverse health effects asso-
ciated with the hazard.

Risk characterization consolidates this information, offering a
quantitative estimation of the likelihood, along with its associated un-
certainties, of experiencing known or potential adverse health effects in
a specific population. This estimation draws on data from hazard iden-
tification, hazard characterization, and exposure assessment
(Commission, 1999).

Generally, cheeses are considered safe and nutritious food, but food-
borne illnesses related to cheese consumption can occur (see, e.g.,
Dubois-Brissonnet et al., 2022). In the microbial risk assessment
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literature, there exist a number of QMRA studies on the contamination
of raw milk soft cheese (see, e.g., Sanaa et al., 2004; Tenenhaus-Aziza
et al., 2014; Campagnollo et al., 2018; Ramos et al., 2021; Lindqvist
et al., 2002), where the authors have proposed methods not only to
compute bacterial prevalence and contamination at the time of con-
sumption but also to identify major parameters contributing to the risk,
using simulation studies (usually through “what-if” scenarios).

Among all food-borne pathogens, Shiga-toxin producing Escherichia
coli (STEC) in soft cheese is a notable concern (Farrokh et al., 2013). The
definition of the virulence potential of STEC is not straightforward
(Lindqvist et al., 2023). Depending on the strains’ characteristics and the
exposed population, the symptoms can range from mild to severe ill-
nesses, such as Haemolytic and Uremic Syndrome (HUS), which is a
leading cause of renal failure in young children. The growth and survival
of pathogenic STEC serotypes throughout different phases of cheese
production, were studied by Maher et al. (2001) and Miszczycha et al.
(2016). In this context, Perrin et al. (2014) proposed a stochastic QMRA
model to assess the risk of HUS associated with the five Main Pathogenic
Stereotypes of STEC (MPS-STEC) in raw milk soft cheeses, and explored
the role of control measures for minimizing the risk of illness.

Building on the work of Perrin et al. (2014), we introduce a new
farm-to-fork QMRA multipathogen model, integrating the impacts of
three bacteria-specifically, STEC, non-typhoidal Salmonella, and Listeria
monocytogenes-which can be potentially present in raw milk (see, e.g.,
Costanzo et al., 2020; Van et al., 2009; Sanaa et al., 2004). Like STEC,
Salmonella and Listeria monocytogenes are hazards that, upon infecting
humans, can trigger distinct health conditions. Salmonella can lead to a
condition called salmonellosis, which is characterized by symptoms
such as diarrhea, abdominal pain, fever, and vomiting. Listeria mono-
cytogenes, on the other hand, can cause listeriosis, a more severe illness
(see, e.g., Camargo et al., 2017; Leclercq et al., 2014), that can lead to
fever, muscle aches, nausea, diarrhea, and in severe cases, can even
result in meningitis or septicemia.

This newmultipathogen QMRAmodel integrates the pre-harvest and
post-harvest intervention steps in the cheese production processes,
which are used as control measures. This integration will enable the
evaluation of their impact on the risk of illness.

This article is structured as follows. Section 2 describes the model
with the underlying assumptions and its components, along with their
functionalities, developed according to the World Health Organization
et al. (2021) framework. Section 3 elaborates on the implementation of
the model, detailing the selection of model parameters and the mathe-
matical and statistical techniques employed. Section 4 presents numer-
ical results regarding bacterial prevalence and risk reduction, derived
from exploring various intervention scenarios. Finally, Section 5 pro-
vides a discussion on the model’s usage, applicability, and perspectives
for future work.

2. Description of the proposed hierarchical model

2.1. Model overview

The multipathogen QMRA model builds upon the QMRA model for
STEC proposed by Perrin et al. (2014) and the R implementation pro-
vided by Basak et al. (2024).

The QMRA model is used to assess the risk of microbial contamina-
tion by examining the evolution of pathogens throughout the entire
cheese-making process, from the farm where milk is produced to the
consumer’s fork where it is consumed. This farm-to-fork model can be
regarded as a stochastic simulator, a computational model used for
simulating a complex system that incorporates inherent randomness.
The model consists of two hierarchical components: a batch-level
simulator and an output module. The batch-level simulator models all
the various steps of the cheese manufacturing process, beginning with
the collection of milk from a specific number of farms on a given day and
continuing through the production process. The production process
usually lasts up to 14 days until the cheese ripening step, followed by a
cheese storage step until the 22nd day, after which the produced batch
of cheese is sent to the market (see, e.g., Perrin et al., 2014). A typical
batch of cheese usually contains 22,000–23,000cheeses of 250 g, pro-
duced using a total volume of 50,000 l of raw milk, though it can vary
depending on the cheese producer. The outputs of interest correspond-
ing to a particular cheese batch is produced by the batch-level simulator,
which are then used by the output module, that produces an estimate for
the impact of the food-borne illnesses and the intervention costs.

Notations and abbreviations Throughout this article, we adopt a no-
tation convention in which, depending on the variables used for the
indices, it is implicitly assumed that these variables have values in
different sets of pathogens, as summarized in Table 1.

Here, MPS-STEC denotes the Main Pathogenic Serotypes of Shiga
Toxin Producing Escherichia coli, and it is classified into two subclasses
based on serotype markers, namely O157:H7 and non O157:H7 (Perrin
et al., 2014). For Salmonella, we consider two subclasses corresponding
to their high and low virulent strains, respectively abbreviated by HV
Salmonella and LV Salmonella. In mathematical notations, these are
further compressed as HV-Salmo and LV-Salmo. For Listeria mono-
cytogenes, the abbreviation Lm is used.

Modules The batch-level simulator has four modules: a farm module
followed by a preharvest intervention step, a cheese production module,
a consumer module, and a postharvest sampling module.

The sets of input parameters, as detailed in Section 3.2, for each of
the modules, are aggregated in a vector denoted by θ =

{
θfarm, θcheese,

θcon,θpost
}
, which forms the input parameter of the simulator.

The farm module, as explained in Section 2.3.1, models the collec-
tion of milk from different farms and outputs the initial pathogen con-
centration Ymilk

x in the aggregated milk tank, for the pathogen x (see
Table 1). (Note that we use capital letters in the description of the model
to designate random variables. This will be made explicit in the next
sections.) The farm module also implements the preharvest intervention
step, as explained in Section 2.5.1, which prevents contaminated farm
milk from entering the production process.

The cheese module, as explained in Section 2.3.2, models the evo-
lution of pathogens during the cheese production process and simulates
the colony size Yx‡ and the average number of colonies λcolonyx† in a single

cheese from that specific batch. Note that Yx‡ and λcolonyx† are random
variables that depend on Ymilk

x and θcheese.
The consumer module, as described in Section 2.4.1, models the

impact of the ingested dose of pathogen by the consumer and estimates
the risk of illness.

The postharvest intervention step, as described in Section 2.5.2,
implements the microbial cheese sampling plan and estimates the
probability of detecting contamination in the produced batch of cheese.

Given the input vector θ, the batch-level simulator yields the
following outputs relevant to a particular batch: the milk loss per batch
Mbatch due to the preharvest intervention step, the probability of
rejecting the batch of cheese Pbatch due to the postharvest intervention
step, and the batch risk Rbatch

x , that is, the risk of encountering food-
borne illnesses due to pathogen x, if a portion of 25 g of cheese is
consumed from that specific batch of cheese. Again, note that Mbatch,

Table 1
Notations and corresponding pathogen classification.

Index
notation

Pathogen membership set

x MPS-STEC, Salmonella, Lm
x† MPS O157:H7, MPS nonO157:H7, HV Salmonella, LV Salmonella,

Lm
x‡ MPS O157:H7, MPS nonO157:H7, Salmonella, Lm
x†† MPS-STEC, HV Salmonella, LV Salmonella
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Pbatch and Rbatch
x are random variables in what follows. When the batch

level simulator is run once, it will simulate a sample value for these
random variables, conditional on θ.

Fig. 1 offers a schematic diagram of the batch-level simulator,
encompassing several modules and simulating outputs corresponding to
the production of a single batch of cheese. The output module, as
explained in Section 2.6.1 and demonstrated by Fig. 9, is used to
simulate several batches of cheese, that is, several sample values of
Mbatch, Pbatch and Rbatch

x , and to estimate the final quantities of interest, e.
g., the prevailing risk of illness, average milk loss, and average proba-
bility of rejecting a batch of cheese.

2.2. Hazard identification

The three pathogens identified as hazards in this study—the main
pathogenic serotypes of Shiga-toxin producing Escherichia coli (also
known as MPS-STEC), Salmonella, and Lm—can survive or grow during
cheese making, particularly in raw milk soft cheeses (see, e.g., Costanzo
et al., 2020). These bacterias are present in the intestines of lactating
dairy animals, and can be transmitted through fecal matter to their
udders, thereby contaminating milk during the milking process (Gopal
et al., 2015).

Main pathogenic serotypes of STEC The five main pathogenic serotypes
of STEC (MPS-STEC) identified thus far in Europe are O157:H7, O26:
H11, O103:H2, O111:H8, and O145:H28. According to Panel et al
(2020), EFSA (2017), 14 outbreaks involving STEC in milk, dairy, and
cheese products were recorded between 2012 and 2017, affecting 775

individuals, with the primary causative agents being Shiga
toxin-producing E. coli (STEC). In 2005, in France, an outbreak of He-
molytic Uremic Syndrome (HUS) was reported, linked to the contami-
nation of raw milk soft cheese with E. coli O26 and O80, followed by
another outbreak in 2009 among children up to 15 years (King et al.,
2009) and in 2019 (Jones et al., 2019). However, other pathogenic se-
rotypes have caused major outbreaks. In 2010, atypical STEC serotypes
O104:H4 caused a large outbreak in Germany (see, e.g., Frank et al.,
2011; EFSA, 2012). Recently, the O80 serotype has arisen in Europe
(see, e.g., Bruyand et al., 2019).

Listeria monocytogenes The presence of Lm in rawmilk and cheese has
been extensively reported (see, e.g., Dalzini et al., 2016), with its
widespread occurrence and potential for contamination possible at any
stage of the production chain. Due to cold tolerance, i.e., the ability to
grow at refrigeration temperatures as low as − 1.5∘C, and its capacity to
form resilient biofilms resistant to sanitation, Lm exhibits the ability to
persist and survive in various environments (see, e.g., McIntyre et al.,
2015). According to Authority and Prevention (2022), there were 2183
confirmed invasive human cases of listeriosis in 2021. Cheese was
estimated to be the origin of 1% of the listeriosis cases in Europe ac-
cording to risk assessment models (Ricci et al., 2018).

Salmonella Salmonellosis is recognized as one of the most common
bacterial food-borne illnesses in humans, with several outbreaks re-
ported from Salmonella contamination in raw milk cheese (see, e.g., Ung
et al., 2019; Robinson et al., 2020). Salmonella is commonly found in the
intestinal tract of lactating animals, and milk contamination primarily
occurs during the milking process (Ruzante et al., 2010). Among various
serotypes, Salmonella Dublin, Salmonella Newport, and Salmonella
Typhimurium are commonly linked to salmonellosis in both calves and
adult cows, leading to varying degrees of illness. Additionally, dairy
animals have been found to carry Salmonella serotypes such as Salmo-
nella Cerro, Salmonella Kentucky, Salmonella Mbandaka, and Salmonella
Montevideo without showing any symptoms, while shedding the bac-
teria in their feces (see, e.g., Bonifait et al., 2021; Van Kessel et al.,
2012).

Fig. 1. Batch level simulator: The four modules of the simulator, namely, farm, cheese, consumer and postharvest, are shown in pink boxes, along with their
corresponding set of inputs in violet boxes. The outputs corresponding to a simulation of a single, namely batch are shown using orange boxes. The different modules
are related hierarchically in the sense that the outputs of one model are used as inputs to other model(s) towards which it shows an arrow.

Table 2
The estimated median values (Cassini et al., 2018) of years of life lived with
disability (YLD) per 1000 cases, years of life lost (YLL) per 1000 cases, and DALY
per 1 case, for STEC infections, listeriosis and salmonellosis. For MPS-STEC the
DALY values are taken from ANSES (2020).

Pathogen YLL (1000 cases) YLD (1000 cases) DALY(1 case)x

MPS STEC infections 2700.0 1000.0 3.7
STEC infections 41.1 13.0 0.0541
Listeriosis 3300.0 400.0 3.7
Salmonellosis 15.0 4.0 0.019
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2.3. Exposure assessment

2.3.1. Farm module
At the farm level, milk is collected from a mixed herd of lactating

animals, which can potentially includes both infected and non-infected
cows, and stored in a bulk tank. During the milking process, pathogens
potentially present in the fecal matter of infected cows can be trans-
mitted into the bulk tank through their contaminated udders. The Bulk
Tank Milk (BTM) is then collected from different farms and mixed into
an Aggregated Milk Tank (ATM), which is used for cheese production. In
the QMRAmodel, the farmmodule replicates this entire scenario of milk
collection and simulates the concentration in CFU/ml (Colony forming
units per mili liters) of all the pathogens in the ATM. The input pa-
rameters of the farm module are listed in Table 3.

The concentration Ymilk
Lm of Lm in the ATM was studied by Sanaa et al.

(2004). Following this work, we model Ymilk
Lm as a log-normal random

variable:

Ymilk
Lm

⃒
⃒θfarm ∼ Lognormal(μLm, τLm). (1)

Due to very low contamination level, insufficient knowledge and the
unavailability of a reliable method to directly determine the pathogen
concentration in milk for STEC and Salmonella, we employ the indirect
approach of estimating concentration used by Perrin et al. (2014) for the
QMRA model for STEC. This approach relies on collected data on E. coli
concentration in farm milk, assuming that E. coli and other pathogen
strains follow the same fecal routes.

Suppose that, for each farm indexed by i = 1,2,⋯,Nfarms, the milk is
collected into a BTM from Ncow

i cows; then the concentration of path-
ogen x†† in the BTM corresponding to farm i is denoted by Ymilk

x†† ,i and is
obtained as,

Ymilk
x†† ,i = YEC

i ⋅
Fx††i

FECi
, (2)

where YEC
i denotes the concentration (CFU/mL) of E. coli in BTM, Fx††i

and FECi respectively denote the average concentration (CFU/gram) in
the fecal matter for the x†† pathogen and E. coli, coming from all the
cows.

To obtain YEC
i , Fx††i and FECi , the module first models the number of

infected cows using a binomial distribution kji
⃒
⃒
⃒θfarm ∼ Binomial

(
Ncow
i ,

pj
)
, in the ith farm, with the corresponding class probabilities pj of the

two major pathogen classes j ∈ {STEC, Salmonella}. For STEC, the pro-
portion pSTEC of infected cows is estimated using a logit model (following
Perrin et al., 2014). Next, the number of cows affected by the subclass
serotypes is modeled, using the respective class probabilities:

kMPS− STEC
i

⃒
⃒θfarm ∼ Binomial

(
kSTECi , pMPS− STEC

)
, (3)

kHV− Salmo
i

⃒
⃒
⃒θfarm ∼ Binomial

(
kSalmo
i , pHV− Salmo

)
. (4)

The number of Salmonella-infected cows carrying the low virulent
serotype, is computed as kLV− Salmo

i = kSalmo
i − kHV− Salmo

i . For the jth
infected cow, 1 ≤ j ≤ kx††i , in the ith farm, 1 ≤ i ≤ Nfarm, the concentra-
tion in the fecal matter is modeled according to a Weibull distribution
for MPS-STEC (Perrin et al., 2014),

FMPS− STEC
i, j

⃒
⃒
⃒θfarm ∼ Weibull

(
aweibull, bweibull

)
,

and the concentrations of the two serotypes HV-Salmonella, LV-Salmo-
nella are modeled using a log-normal distribution (Bonifait et al., 2021),

log10
(
FSalmo
i, j

)⃒
⃒
⃒θfarm ∼ N

(
aSalmo, bSalmo

)
.

For each farm, the average concentration of pathogen x†† is

Fx††i =
1

Ncow
i

∑k
x††
i

j=1
Fx††i, j .

The concentration of E. coli (CFU/mL) in a BTM YEC
i , is modeled by a

log-normal distribution:

YEC
i

⃒
⃒θfarm ∼ Lognormal(αi, σi). (5)

The average FECi of individual E. coli concentrations in fecal matter
for each cow, denoted by FECi, j , j = 1, 2, ⋯, Ncow

i , is obtained using the
model

log10
(
FECi, j
)⃒
⃒
⃒θfarm ∼ N

(
μecoli, τecoli

)
,

FECi =
1

Ncow
i

∑N
cow
i

j=1
FECi, j .

(6)

Each of the BTMs is tested (also known as milk sorting, see Section
2.5.1) for E. coli concentration and accordingly accepted or rejected for
cheese production. Let S denote the set of farms that qualify after milk
sorting and let Nfarms,sorted = |S|. After milk sorting, milk from all the
qualified BTMs is collected into a single ATM. The final concentration
(CFU/mL) of pathogen Ymilk

x†† in this ATM can be written as

Ymilk
x†† =

∑Nfarms

i=1

(

Ymilk
x†† ,i ⋅

Vi1{i∈S}
∑Nfarms

i=1 Vi1{i∈S}

)

, (7)

where Vi is the volume of milk in liters produced by the ith farm.
Module outputs The farm module models the concentrations (CFU/

mL) of four different pathogenic serotypes in milk in the ATM, namely,
MPS-STEC, HV Salmonella, LV Salmonella and Lm. It also yields the milk
lossMbatch (in Liters), due to the preharvest milk testing step, associated
with the production of that particular batch of cheese. In addition it
models the number of farms discarded due to milk testing Nfarms −

Nfarms,sorted, and the total volume of milk put in production, or in other
words the volume of milk in the ATM

∑Nfarms

i=1 Vi1{i∈S}.

Table 3
The inputs for the Farm module, collectively represented as

(
θfarm

)
, are cate-

gorized into two groups, visually separated by a dashed line. The first part in-
cludes inputs that the user can modify, while the second part comprises fixed
parameters of the model.

Symbol Description Values

Nfarms Number of farms 31
Ncow
i Number of cows in ith farm

Table 4

qmilk Avg. quantity of milk from a
cow

25 Liters

fsorting Milk testing frequency 10 days
lsorting Max. limit of E. coli conc. 50 CFU/mL
αi,σi Hygiene parameter for ith

farm Section 3.1.1

aweibull ,
bweibull

Param. of dist. of STEC in
feces

0.264,16.288 (Perrin et al., 2014)

μecoli, τecoli Mean & sd of E. colidist. in
feces

6,0.3 (Perrin et al., 2014)

μu, τu Param. for estimating pSTEC − 0.927,1.47411 (Perrin et al.,
2014)

μLm , τLm Parameters of Lmdist. in milk − 7.178, 0.552 (Sanaa et al., 2004)
pMPS− STEC Prop. of MPS-STEC carriers 0.025 (Perrin et al., 2014)
pSalmo Prop. of Salmonella infected

cows
0.03 (Bonifait et al., 2021)

pHV− Salmo Prop. of HV Salmonella
carriers

0.33 (Bonifait et al., 2021)
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2.3.2. Cheese module
The inputs for the cheese module are the initial pathogen concen-

trations from the farm module and a set of parameters denoted by θcheese

detailed in Table 5.

After being collected in the ATM, the milk undergoes several pro-
cessing steps, including milk storage, molding, draining, salting,
ripening, and cheese storage. These steps can be categorized into two
phases, namely the liquid phase and the solid phase, respectively illus-
trated by two schematic diagrams in Figs. 2 and 3.

During the premolding steps in the liquid phase, a growth in the
bacteria concentration is observed, for all the three pathogens. At the
end of the liquid phase, the pathogen cells are presumed to become
immobilized within the cheese matrix, resulting in the formation of
colonies. At this stage, the cheese module estimates the average number
of colonies formed in a single cheese. After entering the solid phase, the
cheese module models the evolution of the colonies starting from one
single colony. Finally it estimates the colony sizes for different patho-
gens at the time of consumption. The rest of this section is organized in
three different parts, corresponding to the evolution of pathogens during
the different cheese processing steps.

Growth phase For all three pathogens, the growth phase occurs until
the salting step. Starting from the farm module outputs, the cheese
module models the growth of the pathogens over the different steps
using an ordinary differential equation
⎧
⎪⎨

⎪⎩

dYx

dt
= μmax

x (t)⋅Yx(t)⋅
(

1 −
Yx(t)
ymax

)

,

Yx(0) = Ymilk
x

(8)

where μmax
x (t) stands for the maximum growth rate (in h− 1) and ymax is a

parameter that represents the hypothetical maximum population of
pathogen strains in milk or cheese. The maximum growth rate μmax

x (t), as
shown in Fig. 5a, is modeled against time t according to Augustin et al.
(2005) using the optimal growth rate parameter μoptx , several
physico-chemical parameters {d, pH, T, aw}, and their nominal values,
collectively denoted as θ(μmax) and listed in Table 6. Fig. 4 shows the
variation in physico-chemical parameters over time, as studied by Perrin
et al. (2014).

Remark 1. For Salmonella, the overall initial concentration Ymilk
Salmo is

computed as the sum of the concentrations of its two subclass serotypes.

The concentrations during the liquid phase, specifically at the end of
the storage step Ystorage

x and molding step Ymolding
x , are computed using

(8), as depicted in Fig. 5a.
Corresponding to the three major pathogens, we consider a total of

five different subclass serotypes denoted by x†.
At the end of the liquid phase, conditional on the concentration of the

molding step Ymolding
x , the number of colonies for each pathogen subclass

serotypes are modeled as a Poisson variable
Ncolony
x†

⃒
⃒Ymolding

x ∼ Poisson
(
λcolonyx†

)
, with the mean computed as

λcolonyx† = Ymolding
x ⋅vcheese⋅wloss⋅px† , (9)

where for MPS-STEC and Salmonella, px† denotes the class probability of
the corresponding subclass serotype, whereas pLm = 1 for Lm. The pa-
rameters vcheese and wloss denote the amount of milk used for a single
cheese and the proportion of water loss during the molding step,

Table 5
Cheese module inputs, collectively denoted as θcheese.

Symbol Description Values

θ(μmax) Cardinal params. for μmax
Table 6

μoptMPS− STEC
Optimal growth rate for MPS-
STEC

1.85 (Perrin et al., 2014)

μoptSalmo
Optimal growth rate for
Salmonella

1.02 (Gonzales-Barron et al., 2022)

μoptLm Optimal growth rate for Lm 0.55 (Gonzales-Barron et al., 2022)
ymax,milk Hypothetical max population in

milk
109 CFU/mL (Perrin et al., 2014)

ymax,cheese Hypothetical max population in
cheese

105 CFU/g (Perrin et al., 2014)

pO157 Class probability of MPS O157:
H7

0.76 (Perrin et al., 2014)

pHV− Salmo Class probability of HV
Salmonella

Ymilk
HV− Salmo/

(
Ymilk
HV− Salmo + Ymilk

LV− Salmo
)

pLV− Salmo Class probability of LV
Salmonella

1 − pHV− Salmo

pcolonyHV− Salmo
Consumption probability of HV
Salmonella

λcolonyHV− Salmo/
(

λcolonyHV− Salmo + λcolonyLV− Salmo

)

pcolonyLV− Salmo
Consumption probability of LV
Salmonella

1 − pcolonyHV− Salmo

ρO157 MPS O157:H7 decline rate 0.14 (log10CFU/day) (Perrin et al.,
2014)

ρO157 MPS nonO157:H7 decline rate 0.033 (log10CFU/day) (Perrin et al.,
2014)

δcore Core Salmonelladecline rate 1.4 (Gonzales-Barron et al., 2022)
τδ
core Inter cheese variability of

Salmonella
0.021568496 (Gonzales-Barron
et al., 2022)

δrind Rind Salmonelladecline rate 3.1 (Gonzales-Barron et al., 2022)
τδ
rind Inter cheese variability of

Salmonella
0.022373347 (Gonzales-Barron
et al., 2022)

pcore Param. for core Salmonella
decline

0.274 (Gonzales-Barron et al.,
2022)

prind Param. for rind Salmonella
decline

2.7 (Gonzales-Barron et al., 2022)

ρLm L. mono decline rate Triangular(0.5,1,2) (Sanaa et al.,
2004)

pHLm pH for L. mono second growth
phase

6 (ArtiSaneFood challenge tests)

TLm Temp. for L. mono second
growth phase

12.45 (ArtiSaneFood challenge
tests)

pHstorage Industrial params. for storage
step

Table III in Perrin et al. (2014)

dstorage Storage duration (hours) Triangular(1,12,40) (Perrin et al.,
2014)

Tstorage Storage temperature (∘C) Uniform(4,6) (Perrin et al., 2014)
{d,pH,T} Physico-chemical parameters Table III in Perrin et al. (2014)
aw Parameter for water activity 0.99, Table III in Perrin et al.

(2014)
vcheese Milk used in a single cheese 2200 mL (Basak et al., 2024)
wloss Proportion of water loss in

molding
0.9 (Perrin et al., 2014)

tconsum Consumption time Triangular(22,30,60) (Basak et al.,
2024)

Fig. 2. Liquid phase steps: storage and molding, models the pathogen concentration, starting from initial concentration Ymilk.

Fig. 3. Solid phase steps: draining, salting, ripening and cheese storage, models the evolution of colony size, starting from 1 bacteria.
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respectively.
Starting from the draining step, with an initial size of 1 CFU, (8)

models growth of the size of that single colony forming unit, until the
salting step. The evolution of each colony inside a particular cheese (of
weight 250 g) is assumed to be identical during the growth phase due to
the same environmental conditions.

Decline phase At the end of the salting step, when the batch of cheese
enters the ripening step, there is a decline in the population of the col-
onies. The ripening step lasts until the 14th day of the production (Perrin
et al., 2014), followed by a cheese storage step until the 22-nd day
(Basak et al., 2024), and after that the cheese is sent to the market. The
cheese is consumed on the tconsumth day, which is a
triangular-distributed random variable with minimum possible value
22.

For MPS-STEC and Salmonella this decline phase is considered as a
continuous process which lasts until the cheese is consumed, whereas for
Lm, only a decline in the colony population is considered. Let tsalting be

the time taken (in hours) until the salting step, then for any time point
t > tsalting, the cheese module computes four reference colony sizes
Yx‡ (t), for the four pathogenic serotypes denoted by x‡. These reference
colony sizes represent the size of the respective pathogen colonies inside
a particular cheese in the batch, without taking into account the inter-
cheese variability. Here, we assume that all colonies within a partic-
ular cheese have the same decline phase, indicating no intra-cheese
variability.

Following Perrin et al. (2014), the decline phase for MPS-STEC is
modeled differently for its different subclass serotypes, indexed by
s ∈ {MPS O157:H7, MPS nonO157:H7}. For MPS-STEC the reference
colony size at time point t (in days), is computed as Ys(t) =

Ysalting
MPS− STEC⋅10− ρs ⋅(t− tsalting/24), with the subclass serotypes distinguished by

the decline rate parameter ρs.
The decline phase for Salmonella is dependent on the position of the

colonies in the cheese matrix. The decline is modeled using different set
of parameters for the core region colonies and the rind region colonies
(Gonzales-Barron et al., 2022), namely, {δs,ps}, for s ∈ {core,rind}. The
reference colony size at time t, for serotype s is computed as Ys(t) =

Ysalting
Salmo ⋅10− ((t− t

salting/24)/δs)
ps
. The reference colony size YSalmo(t) for Sal-

monella is obtained by averaging over the core and rind region with
respect to the proportion of colonies in those region pcore.rind.

Following Sanaa et al. (2004), for Lm, there is a decrease in the
population after the salting step during curd acidification in cheese vats
and molds, and it is modeled using log apparent kills, Ypost.salting

Lm =

Ysalting
Lm ⋅10− ρLm , with a triangular distributed decline parameter ρLm.
Second growth phase The second growth phase is only observed for Lm

(Sanaa et al., 2004), and it initiates depending on the position of the
colonies in the core and rind region. Challenge test data collected under

Fig. 4. Dynamic physico-chemical parameters, namely pH and temperature, during milk storage, molding, draining and salting steps of cheese production, separated
by blue dotted lines.

Fig. 5. The three pathogens STEC, Salmonella and Lm are shown in red, blue and black lines respectively. The evolution of bacteria is calculated starting from average
values of initial concentrations, for a baseline scenario with no preharvest intervention step.

Table 6
Cardinal parameters for the computation of μmax for MPS-STEC (Perrin et al.,
2014), Salmonella (Gonzales-Barron et al., 2022) and Lm (Sanaa et al., 2004).

Symbol MPS-STEC Salmonella Lm

Tmin 5.5 3.4 − 1.7
Topt 40.6 38.5 37
Tmax 48.1 46 45.5
pHmin 3.9 4 4.71
pHopt 6.25 7 7.1
pHmax 14 9 9.61
awmin 0.9533 0.94 0.913
awopt 0.999 0.99 0.997
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the ArtiSaneFood project were used to identify the favorable environ-
mental conditions, namely, the physico-chemical parameters pHLm, TLm
that initiate the second growth step. These parameters were used to
estimate the maximum growth rate for Lm, and the colony size for the
core and rind regions at time twasmodeled separately using (8), starting

from an initial concentration Ypost.salting
Lm . It was observed that colonies in

the core region (comprising 90% of the total colonies) enter the second
growth phase after 20 days of the salting step, while the colonies at the
surface region (making up 10% of the total colonies) initiate their sec-
ond growth phase after 7 days of the end of salting step, or equivalently,
the start of the ripening step. The reference colony size YLm(t) is ob-
tained by averaging over the core and rind regions, similarly as
Salmonella.

The evolution of colonies for the three pathogens, during the solid
phase, is depicted in Figs. 6a, b, and 7.

Module outputs For all the five subclass serotypes, the expected
number of colonies λcolonyx† at a particular time point t is adjusted with
respect to the corresponding reference colony size of the subclass sero-
type (for example, YO157(t) and YO157(t) for MPS-STEC) or the reference
colony size of the pathogen itself (for example, YSalmo(t) and YLm(t) for
Salmonella and Lm respectively), at time t. If the reference colony size
Yx‡ (t) falls below 1, we choose the assumption that the colonies have
disappeared with a probability Yx‡ (t), and the corresponding adjusted
expected number of colonies is obtained as λcolonyx† (t) = λcolonyx† ⋅Yx‡ (t). If
Yx‡ (t) > 1, the expected number of colonies remains unchanged.

The outputs of the cheese module are the adjusted expected number
of colonies λcolonyx† (t), for pathogen x† and the corresponding reference
size of the colonies Yx‡ (t), for pathogen x‡. These quantities are
computed at two specific time points, firstly, the time of testing samples
from the cheese batches ttest, and secondly at the time of consumption
tconsum.

Fig. 6. Evolution of colony sizes starting from unit size, for MPS-STEC and Salmonella, during the draining, salting and ripening steps, separated by blue dotted lines.

Fig. 7. Evolution of colony sizes starting from unit size, for Lm, during the draining, salting, ripening and cheese storage step, separated by blue dotted lines. The red
and orange dotted lines respectively indicates the starting time of the second growth step, corresponding to the rind and core region colonies.

Table 7
Inputs of the consumer module collectively denoted as θcon.

Symbol Description Values

k, r0 Param. in STEC dose-response 0.38,1e − 2.33
agemax Maximum age group 15
wcheese weight of a single cheese 250 g
wserving weight of a single serving 25 g
g(age) Prop. of cheese consumed per age (Perrin et al., 2014)
μϵO157 Mean of ϵO157 0 (Basak et al., 2024)
τϵO157 SD. of ϵO157 0.000279659 (Perrin et al., 2014)
μϵO157

Mean of ϵO157 0 (Basak et al., 2024)
τϵO157 SD. of ϵO157 0.000065399 (Perrin et al., 2014)
αHV− Salmo HV Salmonella dose-response

parameter
0.132 (Strickland et al., 2023)

αLV− Salmo LV Salmonella dose-response
parameter

0.318 (Strickland et al., 2023)

βHV− Salmo HV Salmonella dose-response
parameter

51.45 (Strickland et al., 2023)

βLV− Salmo LV Salmonella dose-response
parameter

4729.9 (Strickland et al., 2023)

θg , r Lm dose-response parameters (Ricci et al., 2018; Pouillot et al.,
2015)

Ndose Monte Carlo sample size 10000
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2.4. Hazard characterization

2.4.1. Consumer module
The consumer module describes the nature and probability of

adverse human effects as a function of viable pathogen numbers inges-
ted, termed the dose. The consumer module uses the outputs of the
cheese module, that is, the adjusted expected number of colonies
λcolonyx† (tconsum) in a cheese and the reference size of one colony
Yx‡ (tconsum), at the time of consumption tconsum. In addition to the cheese
module outputs, the other inputs of the consumer module, denoted by
θcon, are listed in Table 7. The consumer module simulates the risk of the
corresponding illness based on the cheese consumption behavior of
people in different age groups.

Inter-cheese variability In the modeling of risk, considering inter-
cheese variability is crucial as it accounts for the differences observed
in the distribution of pathogenic colonies across different cheese sam-
ples. Specifically, even though the reference colony sizes Yx‡ (t), as
mentioned in Section 2.3.2, are defined without the inter-cheese vari-
ability, this variability is explicitly incorporated during risk
computation.

For MPS-STEC, the final colony sizes for the two subclass serotypes,
with the inclusion of the inter-cheese variability, follow a log-normal
distribution (Perrin et al., 2014), described by Ycolony

s =

Ys(tconsum)⋅10ϵs , where ϵs ∼ N
(
μϵs , τϵs

)
represents the parameter for

inter-cheese variability, with s denoting the two subclass serotypes of
MPS-STEC s ∈ {MPS O157:H7, MPS nonO157:H7}. While this assump-
tion is made for MPS-STEC, we still posit that there is no intra-cheese
variability, meaning all the colonies inside a specific cheese share an
identical size Ycolony

s for serotype s (Perrin et al., 2014).
For Salmonella, the inter-cheese variability could be introduced

through the variance of the decline step parameter δs, for s ∈ {core,
rind}, denoted by τδ

s (Gonzales-Barron et al., 2022), as seen in Table 5.
However, the current model assumes no inter-cheese variability for
Salmonella and for Lm as well, resulting in their final colony size being
equivalent to the reference colony size.

Model for the dose The risk of getting the food-borne illness is
dependent on the number of cells of pathogen x† ingested by the con-
sumer, which is referred to as the dose, denoted by Γx† . The dose is

defined as the number of pathogenic cells present in a particular cheese
serving of 25 g, which is obtained by multiplying the size of colonies
Ycolony
x‡ with the number of colonies Ncolony− serving

x† in a cheese serving,
distributed as

Ncolony− serving
x†

⃒
⃒
⃒
⃒λ

colony
x† , tconsum ∼ Poisson

(

λcolonyx† (tconsum)
wserving

wcheese

)

. (10)

Probabilities of illness To obtain probabilities of illness, three different
dose-response models were used corresponding to the three different
pathogens. Following Perrin et al. (2014), an exponential dose-response
model was used for MPS-STEC, that uses the combined dose ΓMPS− STEC =

Ncolony− serving
O157 ⋅Ycolony

O157 + Ncolony− serving
O157

⋅Ycolony
O157

, which is the sum of the doses
corresponding to the two different serotype classes of MPS-STEC. The
probability of getting the HUS disease by consuming a serving of 25 g of
cheese, conditional on Age = age and dose ΓMPS− STEC = γMPS− STEC, can be
written as

PHUS(age, γMPS− STEC) = 1 − (1 − r0⋅exp(− k⋅age))γMPS− STEC . (11)

For Salmonella, a Beta-Poisson dose-response model proposed by
McCullough and Elsele (1951), World Health Organization (2002) is
used, with model parameters (Strickland et al., 2023) dependent on the
two subclass serotypes s, for s ∈ {HV Salmonella, LV Salmonella},

PSalmonellosis(Γs) = 1 −

(

1+
Γs

βs

)− αs
. (12)

Conditional on dose Γs = Ncolony− serving
s ⋅Ycolony

s , for each serotype s, the
probability of getting salmonellosis from the consumption of a serving of
25 g of cheese, is a weighted average, using the respective consumption
probabilities based on expected number of high and low virulent col-
onies in a cheese serving:

PSalmonellosis(ΓHV− Salmo,ΓLV− Salmo) =

PSalmonellosis(ΓHV− Salmo)⋅pcolonyHV− Salmo + PSalmonellosis(ΓLV− Salmo)⋅pcolonyLV− Salmo.

For Lm, the dose-response is adapted from Ricci et al. (2018), based
on the Poisson model, which takes into account the variability in sus-
ceptibility across mutually exclusive population subgroups, as proposed
by Pouillot et al. (2015). Conditional on dose ΓLm = Ncolony− serving

Lm ⋅Ycolony
Lm ,

and population subgroup θg, the probability of getting listeriosis, from
the consumption of a serving of 25 g of cheese, is written as

PListeriosis
(
θg,ΓLm

)
=

∫ 1

0
(1 − exp( − r⋅ΓLm))p

(
r; θg

)
dr, (13)

where r is the probability of developing listeriosis from the ingestion of a
bacterial cell in a given, specific serving, and p

(
r; θg

)
represents the

remaining individual (within-group) susceptibility variability and strain
virulence variability in r.

Batch risk The consumer module models the risk for each of the food-
borne illnesses, associated with the consumption of a particular batch of
cheese. For each pathogen x, the batch risk depends on a vector of sto-
chastic internal variables of the QMRA model, denoted by Ξx, which
characterizes a batch.

The vector Ξx includes the initial concentration Ymilk
x of the respec-

tive pathogen in the ATM, the stochastic parameters
{
dstorage, Tstorage

}
,

corresponding to the storage step, and the stochastic consumption time
tconsum. Depending on the specific pathogen, Ξx comprises of other sto-
chastic variables. For Salmonella, Ξx includes the rate parameters {δcore,
δrind} and for Lm it includes the rate parameter ρLm.

We define the batch risk Rbatch
x (ξx) as the probability of getting the

particular illness from pathogen x, by consuming a portion of 25g of
cheese from a particular batch, characterized by the internal variables
Ξx = ξx. Further we define two events Eillness(x)⊂Emarket, where Emarket

indicates that the particular batch goes to the market (i.e. is not rejected)

Fig. 8. Directed acyclic graph showing the dependence between the model
variables. The dependent variables are positioned at the arrow tips, signifying
their dependence on the specific variables, which are situated at the arrow
ends. No arrows between any two variables signifies independence. This graph
is used to simplify the conditional expectations defined later in this chaper,
using the dependence relationship.
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and Eillness(x) stands for the event that the particular batch goes to the
market and the consumer gets the illness from pathogen x. The mutual
dependence between different model variables and these events are
shown in Fig. 8. In this Directed Acyclic Graph, a specific dependent
variable, conditioned by any of the variables placed at one of its arrow
ends, is considered to be conditionally independent with respect to all
the variables positioned at the subsequent arrow ends. From the defi-
nition of the batch risk we have

Rbatch
x (ξx) = P[Eillness(x) |Ξx = ξx,Emarket]

= E
[
1Eillness(x) |Ξx = ξx,1Emarket = 1

]
,

(14)

and from the definition of the probability of illness in (11)–(13), we
have,

Pillness(x)(age, γx) = P[Eillness(x) |Age = age,Γx = γx, Emarket]

= E
[
1Eillness(x) |Age = age,Γx = γx,1Emarket = 1

]
.

(15)

Since 1Eillness(x) is conditionally independent of Ξx, given Γx, using (15) and
the law of total expectation, we can write

E
[
1Eillness(x) |Ξx,1Emarket

]

= E
[
E
[
1Eillness(x) |Age,Γx,Ξx,1Emarket

] ⃒
⃒Ξx,1Emarket

]

= E
[
E
[
1Eillness(x) |Age,Γx, 1Emarket

] ⃒
⃒Ξx,1Emarket

]

= E
[
Pillness(x)(Age,Γx)⋅1Emarket + 0⋅1Emarket

|Ξx,1Emarket

]
.

(16)

Using (16) and the conditional independence with respect to Emarket

given Ξx, the definition of Rbatch
x (ξx) in (14) boils down to

Rbatch
x (ξx) = E[Pillness(x)(Age,Γx) |Ξx = ξx]

=
∑age

max

age=1

∫ ∞

0
Pillness(x)(age, γx)⋅p(age, γx|Ξx = ξx)dγx

=
∑age

max

age=1
g(age)

∫ ∞

0
Pillness(x)(age, γx)p(γx|ξx)dγx,

(17)

where the joint probability distribution of the Age and the dose Γx|Ξx =

ξx is p(age, γx|Ξx = ξx) = g(age)⋅p(γx|ξx), with
g(age) = P[Age= age|Emarket] being the age distribution of cheese con-
sumers.

For MPS-STEC, the parameter g(age) controls the proportion of
cheese consumed by the age group (see, e.g., Perrin et al., 2014), and for
Salmonella, the age parameter is considered to have no effects (Teunis
et al., 2010; Teunis, 2022). The batch risk for Lm uses the model by
Cadavez et al. (unpublished), where the population subgroups are based
on different age groups, namely, {[1,4], [5,14], [15,24], [25,44], [45,64],
[65,74], [75, + ∞]}, for males and females separately.

2.5. Risk management options

2.5.1. Preharvest: milk sorting
The preharvest intervention strategy, a.k.a milk sorting, is carried

out just before mixing the BTM from several farms into the ATM. In this
step, the E. coli levels in BTM coming from the farms are tested and tanks
with concentration above a certain threshold are rejected from the
production chain. Each BTM is tested for E. coli concentration and the ith
farm is rejected if YEC

i > lsorting. The milk loss for a particular batch is

given by Mbatch =
∑Nfarms

i=1 Vi1{i∕∈S}, where S denotes the set of farms that
qualify after milk sorting. We note that the parameters controlling the
preharvest intervention step are mainly the frequency of milk sorting
f sorting (measured in days) and the threshold of milk sorting lsorting
(measured in CFU/mL), as listed in Table 3. The milk sorting strategy is
based on the hypothesis that E. coli and other pathogen strains follow the
same fecal routes in the cows body (see, e.g. Perrin et al., 2014), as a
results the E. coli concentration in the BTM, can be used as a measure of
the farms hygiene conditions.

Remark 2. In the current implementation of the QMRA model this
milk sorting strategy only affects the concentration of STEC, MPS-STEC
and Salmonella in the ATM. For Lm since the concentration in the ATM is
simulated directly, it remains unaffected by the milk sorting. Imple-
mentation of a more realistic and efficient preharvest intervention
strategy is discussed in Section 5.1.

2.5.2. Postharvest: microbial cheese sampling
The postharvest intervention strategy, a.k.a cheese sampling, can be

implemented at different stages of cheese production depending on the
type of bacteria. Typically, for raw milk soft cheese, the sampling pro-
cess is carried out at the end of the salting step, during the third day of
production. However, some producers may choose to implement cheese
sampling during cheese ripening, until the 14th day from the beginning
of production. In our model, the cheese sampling time is determined by a
parameter ttest, which is by default set at 14th day of production. Cheese
sampling consists in inspecting a batch of cheese for pathogen
contamination, and this is done with respect to small portions, called
sampling units, taken out of the batch. Once a single sample unit is
tested positive for any of the three major pathogens under consideration,
the whole batch of cheese is not sent to the market. Let nsample and
msample respectively denote the number of sample units taken from a
batch and the mass of each sample unit (usually fixed at 25 g). The
probability for a sample unit being tested positive for the three main
pathogens, is

Punitx (ξx) = P
(
Ncolony.sample
x >0

⃒
⃒Ξx = ξx

)

where conditionally on Ξx = ξx, N
colony.sample
x is a Poisson distributed

random variable, with expectation
(

λcolonyx
msample

wcheese

)

, and λcolonyx corre-

sponds to the average number of colonies for pathogen x in the cheese
sample, given Ξx = ξx.

For MPS-STEC and Salmonella, the average number of colonies λcolonyx
is obtained as the sum of the average number of colonies of their
respective subclass serotypes. The probability of detecting a colony in

any of the sample units is Psample
x (ξx) = 1 −

(
1 − Punitx (ξx)

)nsample

.
Assuming the detection events of the three types of pathogens are in-
dependent, the probability of rejecting the batch of cheese, given Ξ = ξ,
where Ξ = (Ξx)x, is obtained using the formula for the union of three
independent events:

Pbatch(ξ) =
∑

x
Psample
x (ξx) −

∑

x<x†
Psample
x (ξx)⋅P

sample
x† (ξx) +

∏

x
Psample
x (ξx).

(18)

The parameters for the postharvest step are listed in Table 8.

Table 8
Inputs for postharvest module collectively denoted as θpost are shown in the first
part of the table. In the second part the cost values of the intervention steps are
shown.

Symbol Description Values

nsample Number of test portions 5
msample Mass of each test portion 25 gm
ptest Prop. of batch tested 0.5
ttest Time when batch is tested 14th Day
Cmilk
test Cost of testing farm milk 10 EUR

Cmilk
loss Cost of rejecting one Liter milk 0.2 EUR

Ccheese
test Cost of testing one cheese sample 70 EUR

Ccheese
loss Cost of rejecting one cheese 1.5 EUR
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2.6. Risk characterization

2.6.1. Output module
The output module, demonstrated in Fig. 9, is outside the batch level

simulator and its purpose is to obtain estimations of the expectation of

the quantities of interest for a given set of θ =
{

θfarm,θcheese,θcon,θpost
}
.

As will be explained in Section 3, the estimations will be carried out
usingMonte Carlo simulations. The output module uses three batch level
simulator outputs, namely, the batch risk Rbatch

x (ξx), the probability of
rejecting a batch Pbatch(ξ) and the milk loss Mbatch.

The average milk loss is defined as Mavg = E
[
Mbatch].

The average batch rejection rate, or equivalently the average prob-
ability of a batch not going to the market is defined as Pavg = P[Emarket].
Further we have E

[
1Emarket

⃒
⃒Ξ = ξ

]
= ptestPbatch(ξ), where ptest is the

proportion of cheese batches tested. Then using the law of total expec-
tation we can write

Pavg = E
[
E
[
1Emarket

|Ξ
]]

= E
[
ptestPbatch(Ξ)

]
,

(19)

The average risk of illness Rx, from pathogen x, is the conditional
probability P[Eillness(x)|Emarket], of getting the illness from consuming a
portion of 25g of cheese from a batch of cheese, that was not rejected,
produced with input parameters θ. Recalling Ξ = (Ξx)x and using the law
of total expectation twice, we can write

P[Eillness(x)] = E
[
1Eillness(x)

]

= E
[
E
[
1Eillness(x) |Ξx, 1Emarket

]]

= E
[
Rbatch
x (Ξx)⋅1Emarket + 0⋅1Emarket

]

= E
[
Rbatch
x (Ξx)⋅E

[
1Emarket

⃒
⃒Ξ
]]

= E
[
Rbatch
x (Ξx)⋅

(
1 − ptestPbatch(Ξ)

)]
.

(20)

Now using (20) and recalling Eillness(x)⊂Emarket, the definition of Rx

boils down to,

Rx =
P[Eillness(x)]
P[Emarket]

=
E
[
Rbatch
x (Ξx)⋅

(
1 − ptestPbatch(Ξ)

)]

1 − Pavg
.

(21)

Module outputs The three quantities of interest produces by the
output module are, the average milk loss Mavg, average batch rejection
rate Pavg and the average risk of illness Rx from pathogen x. These
quantities of interest characterizes a cheese production process with
input parameters θ.

2.6.2. DALY: disability-adjusted life years
A key feature of our multipathogen QMRA model is its ability to

assess the impact of pathogens on public health due to the consumption
of raw milk soft cheese. Within all microbial hazards potentially linked
to soft cheese (Dubois-Brissonnet et al., 2022), we focus on the most
severe pathogens, and also to evaluate their collective impact on public
health, specifically in terms of the years of healthy life lost due to the
illnesses resulting from cheese consumption.

To assess the impact on public health from the potential illnesses
induced by cheese consumption, we adopt an approach based on DALYs
(Murray and Lopez, 1997), an acronym for Disability-Adjusted Life
Years. DALYs combine the years of life lived with a disability (YLD) and
the years of life lost (YLL) due to premature death from the illness.

The DALY takes into account a spectrum of symptoms, which include
death, loss of kidney function, prolonged or short-term hospitalization,
bloody diarrhea, diarrhea, among others. Furthermore, the age of the
afflicted person impacts DALYs, with a child’s death yielding higher
DALYs compared to the death of an older individual.

DALY metric for cheese portions First we define the expected DALY due
to illness(x) caused by the consumption of a cheese portion by a con-
sumer of Age = age,

DALYportion
illness(x)(age) = E

[
DALYx

⃒
⃒1Eillnessx =1,Age= age

]
, (22)

where DALYx is a random variable, denoting the DALY caused by the
consumption of pathogen x. Further we define the age specific average
risk Rx(age), from pathogen x, which is the conditional probability
P
[
Eillness(x)

⃒
⃒Age = age,1Emarket = 1

]
, for consumers with a particular age,

of getting the illness from consuming a portion of 25g of cheese from a
batch of cheese, produced with input parameters θ and given that the
particular batch actually goes into the market (not rejected). Following
similar derivation steps of Rx, we can write

Rx(age) =
E
[
Rbatch
x (Ξx, age)⋅

(
1 − ptestPbatch(Ξ)

)⃒
⃒Age = age

]

1 − Pavg
, (23)

where the age specific batch risk Rbatch
x (age) is given by

Rbatch
x (ξx, age) =

∫ ∞

0
Pillness(x)(γx, age)⋅p(γx|Ξx = ξx)dγx. (24)

Then using the law of total expectation, the definition of overall risk
in (21) can be expressed as Rx = E[Rx(age)].

Now for the assessment of impact on public health, we are interested
in the average DALY due to the consumption of cheese portions
contaminated with pathogen x, from a batch of cheese that went to the
market. This metric is denoted by DALYportion,x, is derived using the law
of total expectations.

Fig. 9. Output module denoted by the green box is the next hierarchical module of the batch level simulator. It simulates Nbatch independent batches to estimate the
average risk of illness Rx from pathogen x, average milk loss Mavg and average probability Pavg of rejecting a cheese batch.
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DALYportion,x = E
[
DALYx

⃒
⃒1Emarket = 1

]

= E
[
E
[
DALYx

⃒
⃒Age,1Eillness(x) ,1Emarket

]⃒
⃒1Emarket = 1

]

= E
[
E
[
DALYx

⃒
⃒Age,1Eillness(x)

]⃒
⃒1Emarket = 1

]

= E
[
DALYportion

illness(x)(Age)⋅1Eillness(x) + 0⋅1Eillness(x)
⃒
⃒
⃒1Emarket = 1

]

= E
[
DALYportion

illness(x)(Age)⋅1Eillness(x)
⃒
⃒
⃒1Emarket = 1

]
.

(25)

The expectation in (25) can be expressed as a weighted sum of
DALYportion

illness(x)(age), with respect to Rx(age) and g(age),

DALYportion,x =
∑age

max

age=1
DALYportion

illness(x)(age)⋅

P
[
Eillness(x)

⃒
⃒Age= age,1Emarket =1

]
⋅P
[
Age= age

⃒
⃒1Emarket =1

]

=
∑age

max

age=1
DALYportion

illness(x)(age)⋅Rx(age)⋅g(age).

(26)

The expectation in (25) can be expressed equivalently as

DALYportion,x =
∑age

max

age=1
DALYportion

illness(x)(age)⋅

P[Age = age|Eillness(x)]⋅P[Eillness(x)|Emarket]

=
∑age

max

age=1
DALYportion

illness(x)(age)⋅̃gθ(age)⋅Rx

= Rx⋅
∑age

max

age=1
DALYportion

illness(x)(age)⋅̃gθ(age),

(27)

where g̃θ(age) = P[Age= age|Eillness(x)] is the age distribution for the
cases of illness caused by pathogen x, given the simulator inputs θ.

DALY estimation We note that the estimation of the average DALY
metric DALYportion,x using (26) or (27) includes the age specific DALY

values DALYportion
illness(x)(age), which are not directly available in the litera-

ture. However, (27) can be simplified further given certain assumptions.
The age distribution g̃θ(age) for the illness(x), is dependent on the

QMRA simulator inputs θ, through the corresponding dose-response
model and is directly related to the proportion of cheese consumption
g(age) for different age group. Acknowledging that our dose-response
models heavily rely on epidemiological data primarily sourced from
food-borne illness outbreaks, we tentatively posit that the age distribu-
tion g̃θ(age) specific to each illness remains relatively impervious to the
influences of simulator inputs θ, for reasonable variations around their
nominal (baseline) values. Under this assumption, the age distribution
generated by our QMRA rawmilk cheese simulator can be assumed to be
closely aligned with the global pattern. Although for the purposes of this
study we make the above assumption, it is important to acknowledge

that this hypothesis is made for simplification and modeling conve-
nience. The validity of this hypothesis in the real-world context remains
an open question and deserves further investigation.

For the calculation of the DALY metric, we reside to the study by
Cassini et al. (2018), which is based on the Burden of Communicable
Diseases in Europe (BCoDE) project (Kretzschmar et al., 2012; Mangen
et al., 2013), focused on the EU/EEA population between 2009 and
2013. In this study, for each of the concerned illnesses, a model was
created using the BCoDE toolkit (European, 2019). Within each model,
age group-specific and sex-specific annual case numbers, multiplication
factors to account for underestimation, and population data were input
into the software. Finally a Monte Carlo simulation was performed with
10,000 iterations for each illness, to estimate the median DALYs per
case. Table 2 shows the estimated median DALY corresponding to a
singular case, represented as DALY(1 case)x along with the two com-
ponents, namely, YLL and YLD for 1000 cases, for each associated
illness. Given our assumptions, the average DALY metric in (27) can be

simplified by substituting
∑agemax

age=1DALY
portion
illness(x)(age)⋅̃gθ(age) by

DALY(1 case)x from Table 2,

DALYportion,x = DALY(1 case)x × Rx. (28)

It is important to highlight that, in our study, the values presented in
Table 2 are used as best available approximations from the literature.
This choice is motivated by the absence of pertinent analyses from
epidemiological studies in the existing literature. Moreover, it serves the
purpose of streamlining the computations within our study. However, it
is crucial to recognize that utilizing global DALY values for assessing the
health impacts of cheese consumption in France is not ideal. This
approach relies on substantial assumptions, as elaborated earlier.
Consequently, the computation of the DALYmetric in our study does not
fully capture the precise and prevailing impact on public health attrib-
utable to cheese consumption. Therefore, these results should be inter-
preted judiciously. Recognizing the necessity for greater accuracy, the
computation of a more refined DALY metric incorporating relevant
epidemiological studies is deferred as a prospective avenue for future
research.

Moreover, our model considers the dose-response from Perrin et al.
(2014), which estimates the risk of HUS, but the DALY values that could
be found in the literature (see, e.g., Table 2) are either based on all
symptoms of STEC or MPS-STEC. The investigation conducted by
Lindqvist et al. (2023) identifies more predominant strains of MPS-STEC
that specifically contribute to HUS, which is our primary focus. There-
fore, a more comprehensive epidemiological study is essential to accu-
rately estimate DALYs attributed solely to HUS. However, in this study
we use the DALYs corresponding to MPS-STEC to compute the metric in
(28).

The combined influence of the three pathogens, corresponding to the
aggregated impact on public health from the consumption of raw milk
cheese, is defined as DALYportion =

∑
xDALYportion,x, ignoring the con-

sequences of concurrent instances of two or more illnesses.

Fig. 10. Estimated values of hygiene parameters, namely α and σ2, using the data collected during 2019 − 2022 from all the 97 farms (which had no missing data,
out of 104 farms) under three different cheese producers in France.
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3. Model implementation

3.1. Mathematical and statistical techniques

3.1.1. Estimation of farm hygiene parameters
The hygiene level of each of the farms is characterized by two pa-

rameters, namely α and σ, which control the distribution of E. coli in the
farm milk. In Perrin et al. (2014), the authors proposed a hierarchical
Poisson mixed model to express the relationship between these param-
eters and the daily E. coli concentration xd in BTM, that can be written as

xd | Λd ∼ Poisson(Λd)

log(Λd) = α + εd, where εd ∼ N
(
0, σ2),

(29)

where Λd denotes the average E. coli concentration in BTM of the farm
on day d.

We propose a Bayesian approach based on Markov Chain Monte
Carlo (MCMC) sampling to estimate the parameters of this model,
separately for each farm. E. coli test data was collected by CNIEL and
ACTALIA from three French cheese producers, covering a total of 104
farms. The collected data ranges from 10 CFU/ml (which corresponds to
the detection limit of the method) to either 150 or 300 CFU/ml (upper
quantification limit) depending on the producers.

Fig. 10 plots two histograms of the values of α and σ2 respectively, as
estimated for all the farms. Fig. 11 displays the pairs of values for the two
hygiene parameters across different farms, showing a tendency for farms
with higher α values to also have higher σ2 values.

3.1.2. Computing Rbatch(ξx) using simple Monte Carlo
The computation of batch risk for Lm is addressed by the JEMRA

(Cadavez et al., unpublished) toolbox in R, whereas for MPS-STEC and
Salmonella one possible approach is based on the simple Monte Carlo
integration method. It involves the computation of the integral in (17),
with respect to the dose Γx conditional on the stochastic parameters ξx.

This integral can be approximated using Ndose i.i.d samples
{

γ1,x, γ2,x,⋯

, γNdose ,x

}
from the conditional distribution p(Γx | Ξx = ξx), of the

random variable dose Γx, given the vector of stochastic internal vari-
ables ξx.

The approximated batch risk conditional on ξx is obtained as,

R̂
batch
x (ξx) =

∑15

age=1
g(age)

1
Ndose

∑Ndose

i=1
Pillness(x)

(
age, γi,x

)
, (30)

where Pillness(x)
(
age, γi,x

)
is the probability of getting the illness from

pathogen x, for the consumers of a particular age group, by consuming a
portion of 25g of cheese with dose γi,x, coming from a batch associated
with internal variables ξx.

3.1.3. Computing Rbatch(ξMPS− STEC) using integral approximation
For MPS-STEC, the batch risk in (17) can be expressed as

Rbatch
MPS− STEC(ξMPS− STEC) =

∑age
max

age=1
g(age)E[(1 − ra)ΓMPS− STEC ], (31)

where ra = r0⋅exp(k⋅age). The random variable dose ΓMPS− STEC can be
decomposed additively with respect to the two classes of MPS-STEC
strains, ΓMPS− STEC =

∑
sΓs for s ∈ {MPS O157:H7, MPS nonO157:H7},

with

Γs = Yconsum
s Ncolony

s 10τϵs ϵ

= dsNcolony
s bϵ

s ,
(32)

where ds = Yconsum
s , bs = 10τϵs , and ϵ is a standard normal variable. Now

assuming the probability of getting HUS from each of the strains of MPS-
STEC is independent, the expectation in (31) can be decomposed using
the law of total expectations,

E[(1 − ra)ΓMPS− STEC ] =
∏

s
E

[

E[(1 − ra)Γs | ϵ]

]

=
∏

s
E

[

E
[
(1 − ra)dsN

colony
s bϵ

s

⃒
⃒
⃒ ϵ
]
]

.

(33)

The inner expectations E[(1 − ra)Γs | ϵ], can be analytically derived,

E
[
(1 − ra)N

colony
s dsbϵ

s

⃒
⃒
⃒ϵ
]

=
∑∞

ncolonys =0

(1 − ra)n
colony
s dsbϵ

s exp
(
− λcolonys

)
(
λcolonys

)ncolonys

ncolonys !

=
∑∞

ncolonys =0

{
(1 − ra)dsb

ϵ
s λcolonys

}ncolonys

ncolonys !

exp
(
−
{
(1 − ra)dsb

ϵ
s λcolonys

})

exp
(
−
{
(1 − ra)dsb

ϵ
s λcolonys

})exp
(
− λcolonys

)

=exp
(
− λcolonys

{
1 − (1 − ra)dsb

ϵ
s
})

.

(34)

Substituting (34) in (33), we get,

E[(1 − ra)ΓMPS− STEC ] = exp
(
−
(

λcolonyO157:H7 + λcolony
O157:H7

))∏

s
E

[

c
c
cϵs,3
s,2
s,1

]

, (35)

where cs,1 = exp
(
λcolonys

)
, cs,2 = (1 − ra)ds and cs,3 = bs.

Given that cs,1 > 1, cs,2 < 1, and cs,3 > 1, the function c
c
cϵs,3
s,2
s,1 is mono-

tonically non-increasing with respect to ϵ. Such functions can be inte-
grated using deterministic quadrature methods (e.g., the trapezoidal
rule), which offer a better convergence rate compared to simple Monte
Carlo (see, for example, Basak et al., 2022).

3.1.4. Computation of simulator outputs
The final outputs of the simulator as mentioned in Section 2.6.1 are

estimated using simple Monte Carlo method, by simulating Nbatch in-
dependent batches. The average milk loss Mavg = E

[
Mbatch], is approx-

imated using the average of Mbatch from each batch,

M̂avg =
1

Nbatch

∑Nbatch

l=1

Mbatch
l (36)

Each of the simulated batches yields {ξ1, ξ2,⋯, ξNbatch}, the set of in-
ternal stochastic parameters which are used construct the unbiased
estimated of the quantities of interest:

Fig. 11. Scatterplot of the estimated values of α and σ2.
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P̂avg =
1

Nbatch

∑Nbatch

l=1
P̂batch(ξl)ptest. (37)

R̂x =
1

Nbatch(1 − P̂avg)

∑Nbatch

l=1
R̂
batch
x (ξl)

(
1 − P̂batch(ξl)ptest

)
(38)

3.1.5. Computation of intervention cost
One of the several objectives of the ArtiSaneFood project includes the

implementation of intervention strategies for controlling the risk of
food-borne illness. In this case the cost of the intervention strategies
plays an important role. As detailed in Sections 2.5.1 and 2.5.2, the
cheese production process involves two types of intervention strategies:
one involving the testing of farm milk, and the other involving the
testing of cheese after production. In addition to the expenses related to
conducting the microbiological tests, these intervention steps involve
the rejection of both farmmilk and cheese batches. The QMRA simulator
produces two outputs concerning the average loss of milk per batch
Mavg, and the average probability of rejecting a batch of cheese Pavg.
Thus the total cost of the intervention steps (C), can be decomposed into
two part corresponding to the preharvest ans postharvest step, as C =

Cpre + Cpost.

Cpre = NfarmCmilk
test

(
1
/
f sorting

)
+MavgCmilk

loss

Cpost = nsampleCcheese
test ptest + PavgptestCcheese

loss Ncheese
(39)

The parameters
{
Cmilk
test ,Cmilk

loss ,Ccheese
test ,Ccheese

loss

}
corresponding to

different intervention costs, are provided French cheese producer rep-
resentatives andNcheese denotes the average number of cheeses present in
a batch. All the parameters in (39) are described in Table 8.

3.2. Data and parameters

This subsection lists all the parameters of the multipathogen model
with their corresponding values are the references. Table 3 lists the farm
module parameters θfarm. Table 4 shows the frequency distribution of
number of cows in different farms, used to simulate the number of cows
in different farms. Table 6 lists the physico-chemical parameters
required to compute the maximum growth rate μmax for different path-
ogens, and Table 5 lists the other cheese module parameters, which are
collectively denoted as θcheese. Tables 7 and 8 respectively lists the
consumer module θcon and the postharvest module parameters θpost.

4. Model evaluation

4.1. Batch level outputs

As mentioned in Section 2.6.1, the batch level simulator produces
three outputs, namely, the batch risk Rbatch

x (ξx), the probability of
detecting contamination Psample

x (ξx) while testing and the milk loss per
due to preharvest testing Mbatch. These quantities are computed condi-
tionally on the stochastic parameters ξx of the model. To compute the
relative batch risk for each pathogen, the risk associated with the con-
sumption of a particular batch of cheese, denoted by Rbatch

x (ξx), is
divided by a baseline risk value Rbaseline

x . Rbaseline
x is the average risk of

Table 4
Distribution of number of cows: data provided by CNIEL and ACTALIA, collected
from 31 producers of milk. This empirical distribution is used to simulate the
number of cows in farm in the QMRA model.

Cows 5–20 20–40 40–60 60–80 80–100 100–120 Total

Farms 1 2 18 8 1 1 31

Fig. 12. Relative batch risk against initial concentration of pathogen in milk Ymilk
x , with fixed values of other internal variables in ξx.

Fig. 13. Probability of detecting contamination at the time of testing, against initial concentration of pathogen in milk Ymilk
x , with fixed values of other internal

variables in ξx.

Table 9
Baseline results of QRMA model: Summary statistics (mean, median, standard
deviation and quantiles of order 5% and 95%) of the simulated concentration (in
log10 scale) for STEC, MPS-STEC, Salmonella and Lm, in ATM with no milk
testing intervention step.

Symbol Mean Median SD q0.05 q0.95

Ymilk
STEC − 3.44 − 3.5 0.58 − 4.28 − 2.39

Ymilk
MPS− STEC − 5.91 − 5.94 1.0 − 7.51 − 4.24

Ymilk
HV− Salmo

− 5.78 − 5.86 0.94 − 7.21 − 4.12
Ymilk
LV− Salmo

− 5.2 − 5.28 0.82 − 6.41 − 3.72
Ymilk
Lm − 3.12 − 3.12 0.24 − 3.5 − 2.73
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illness from pathogen x in a baseline scenario which corresponds to a
specific situation with no preharvest or postharvest intervention steps.
The relative batch risk against the initial concentration of pathogen in
milk is plotted in Fig. 12. 1000 independent batches are simulated with
fixed values of the internal stochastic variables, with dstorage = 12 hours,
Tstorage = 5 degree Celsius, tconsum = 30 days, ρLm = 1, δcore = 1.4 and
δrind = 3.1. This shows the monotonically increasing relationship with
respect to Ymilk

x . For Salmonella the computation of risk still includes
some extent of randomness due to the use of Monte Carlo method as
explained in Section 3.1.2.

In the same framework, the second output of interest the probability
of detecting contamination Psample

x (ξx), i.e. detecting at least one colony
at the time of testing nsample sample units of mass msampleg, is plotted in
Fig. 13, as a function of initial pathogen concentration in milk. Primarily
Ymilk
x is the major influencing factor for determining the probability of

detecting contamination as well. While MPS-STEC and Salmonella shows
similar behaviour, due to high initial concentration, the probability of
detection of contamination is higher for Lm.

4.2. Concentration and prevalence

The model was used to compute the prevalence of the three patho-
gens during different stages of cheese production. More precisely, the
concentration of the pathogens in the ATM and the corresponding
summary statistics over different batches were simulated, as listed in
Table 9, in presence of no preharvest intervention. Based on the as-
sumptions of the farmmodule stated in Section 2.3.1, a baseline scenario
with no milk testing step was simulated 10,000 times to obtain these
prevalence values.

Remark 3. It is to be noted that these figures does not represent the

actual scenario of farm milk contamination in France, since these values
are based on a hypothetical baseline scenario with no intervention steps,
which is not the case in reality. The baseline scenario is used in this study
as a reference to compare the impact of the intervention strategies.

The prevalence of the pathogens in the cheese (in a standard serving
of 25 g) was also simulated at the time of consumption. The prevalence
is defined as the probability of observing at least one colony of the
particular pathogen in the food-item. The prevalence is computed using
the expected number of colonies given by (9), adjusted with respect to
the size of the colonies at the time of consumption. In a baseline scenario
10,000 batches were simulated with different consumption time, to
compute the average prevalence in a cheese serving, as listed in
Table 10.

Evidently the high prevalence of Lm can be attributed to two major
reason, firstly the high concentration in ATM and as shown in Table 9.
Secondly, as described in Section 2.3.2, Lm has a secondary growth
phase during the ripening step of cheese production, which continues
until the time of consumption. The prevalence for all the three patho-
gens directly affects the postharvest sampling plan.

Consider a postharvest sampling plan with nsample = 5 sample units
of mass msample = 25 g, for each of the pathogens, such that the sample
units are taken at the end of the ripening phase, i.e. at the 14th day of
production. Table 11 lists the expected probability E

[
Psample
x (Ξx)

]
of

detecting a colony of the respective pathogen, in any one of the sample
units. This is estimated using the average probability of rejection over
10,000 simulated batches with no preharvest intervention step.

Clearly the high prevalence of Lm has a significant effect on the final
output of the postharvest sampling plan, i.e. the probability of rejecting
the batch Pbatch(ξ) for detecting at least one of the pathogen colonies, in
any one of the sample units. A particular batch will have a high prob-
ability of getting rejecting due to the high prevalence of Lm. Imple-
mentation of a more realistic postharvest sampling plan addressing
thisissue is discussed in Section 5.1.

4.3. Impact of intervention

As discussed in Sections 2.5.1 and 2.5.2, there exists two types of
intervention steps in the cheese production process, and we are inter-
ested in the finding the optimal values of the intervention parameters.
The impact of the two types of intervention was studied qualitatively,
using a series of different intervention scenarios defined using different
combinations of intervention parameter values. More specifically, the
effect of different intervention scenarios on the relative batch risk, for
the preharvest step on and on the probability of batch rejection, for the
postharvest step, were monitored.

Fig. 14 shows the impact of different scenarios of the preharvest
intervention steps on the relative batch risk, only for two pathogens,

Table 10
Baseline prevalence summary statistics (in percentage) computed at time of
consumption, for cheese servings (25 g) with no intervention steps.

Symbol Mean Median SD q0.05 q0.95

MPS-STEC 1.97 0.16 8.21 0 7.43
HV Salmonella 0.37 0.02 3.22 0 0.91
LV Salmonella 0.75 0.06 4.67 0 2.27
Lm 39.47 37.03 21.97 8.37 80.03

Table 11
Expected probability E

[
Psample
x (Ξx)

]
of detecting at least one colony in any of

nsample = 5 sample units of mass msample = 25 g.

MPS-STEC Salmonella Lm

0.14 0.1 0.5

Fig. 14. Effect of preharvest intervention: The empirical cumulative distribution functions of relative batch risk, corresponding to different intervention scenarios
(varying sorting limit l and probability of batch testing p) and the baseline scenario. The leftmost curve corresponds to the most effective intervention strategy.
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MPS-STEC and Salmonella. Four simple scenarios were considered,
implementing four different preharvest intervention strategies, with
different values of the milk sorting limit lsorting = {10,50}, and different
probability of testing a particular batch of milk p = 1 /f sorting = {0.5,1}.
Corresponding to each of the intervention scenario, 1000 independent
batches were simulated to compute the empirical cumulative distribu-
tion functions (ECDF) of the relative batch risk. Evidently the most strict
scenario with a sorting limit at 10 CFU/ml and with a probability of
testing each batch has the leftmost ECDF curve for the relative batch
risk, as shown by the orange curve in Fig. 14.

Remark 4. Here we study the effect of preharvest intervention only on
MPS-STEC and Salmonella since the proposed QMRAmodel uses directly
the concentratrion of Lm in ATM, which remains unaffected by the
preharvest intervention step (see Section 5.1).

Fig. 15 shows the impact of postharvest intervention step on the
probability of detecting a colony in any of the sample units, if it is tested
separately for each of the pathogen. The ECDFs are used to study
qualitatively, the effect of number of cheese samples a.k.a sample units

taken for the postharvest testing of cheese. The number of sample units
considered, were nsample = {5, 10, 15}, each of mass msample = 25g,
drawn at the end of ripening step. For each of the postharvest scenarios,
1000 independent batches were simulated, and the probability of
detecting a colony in any of the sample units Psample

x (ξx) was computed
separately for three different pathogens. Certainly, a higher number of
sample units tend to produce chance of detecting contamination and, in
turn, a higher probability of rejecting the batch. For MPS-STEC and
Salmonella, the batch rejection probabilities were obtained in presence

Fig. 15. Effect of postharvest intervention: The empirical cumulative distribution functions of probability of detecting a colony in any of the sample units, corre-
sponding to different intervention scenarios with varying nsample. The leftmost curve corresponds to the intervention strategy with highest probability of rejecting a
cheese batch.

Table 12
Values of intervention parameters to construct different intervention scenarios.

Parameter Values Units

fsorting 1, 2, 10 Days
lsorting 10, 20, 30, 50, 100, 200 CFU
ptest 0.1, 0.3, 0.5 Proportion
nsample 1, 5, 10, 15 Sample units

Fig. 16. Figures showing the objective space consisting of the cost (in Euros) of intervention and the DALY per one portion (in μ := 1e − 6 scale), respectively for a
two pathogen (MPS-STEC and Salmonella) and three pathogen (MPS-STEC, Salmonella and Lm) framework. The scatter plots were obtained with 216 different

scenarios made up of different combinations of four intervention parameters
{
f sorting, lsorting, ptest, nsample

}
, among which the parameters, f sorting and ptest are

indicated using different symbols and colors, respectively.

Table A1
Allocation of computational time (using a single core) over different modules of
the QMRA simulator, corresponding to the simulation of single batch.

Module Farm Cheese Consumer

Time spent 0.7% 96.4% 2.9%

Table A2
Allocation of computational time among different steps of cheese production
and their duration. The steps namely, storage, premolding, draining and salting
represents the total time required for all the three pathogens and shows the
combined duration for the three pathogens as well. The second growth step only
concerns Lm and shows the combined duration for the core and rind region.

Step 2nd growth (L.
mono)

Storage Premolding Draining Salting

Time spent 34.9% 20.9% 4.9% 31.4% 7.9%
Duration (in
h)

1136 36 9 51 13.5
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of no preharvest intervention, and for Lm it accounts for the particular
preharvest intervention strategy as explained in Sanaa et al. (2004).
Among the three pathogens, the ECDFs of Lm show higher chances of
detecting contamination at testing, compared to the other two
pathogens.

4.4. Objectives of interest

The previous subsection studies qualitatively the effect of interven-
tion parameters on the batch level outputs, namely, the relative batch
risk and the probability of detecting contamination. However, one of the
goals of the ArtiSaneFood project was to find the optimal values of the
intervention parameters that minimizes the two main objectives of the
QMRA model, namely, the DALY per one portion DALYportion and the
total cost of intervention C. These two objectives are chosen in order to
take into account the impact of intervention strategies both on the
cheese consumers and the cheese producers. As demonstrated Section
4.3, strict intervention strategies can be helpful in reducing the risk of
illness for the consumers, but at the same time it increases the proba-
bility of rejecting the milk and cheese batches. This trade off gives rise to
a multiobjective optimization problem of a stochastic and computa-
tionally expensive simulator (see Appendix A), which is addressed using
Bayesian approaches of design and analysis of computer experiments
(see, e.g., Barracosa et al., 2021; Basak et al., 2023). The problem of
optimization is out of the scope of this article, however this subsection
provides a visualization of the existing trade-off of the two objectives of
interest.

To formalize the optimization problem, four intervention parameters
corresponding to the preharvest and postharvest intervention steps, are
considered. They are respectively, the frequency of testing the farmmilk
f sorting, the threshold for milk testing lsorting, the probability of testing a
cheese batch ptest and the number of cheese sample units tested nsample.
The two objectives that are considered for the multiobjective optimi-
zation problem, are the the DALY per one portion of cheese DALYportion,
caused by any of the pathogen and the total cost of intervention C, due to
the loss of milk, cheese and analytical costs of testing. The computation
of cost follows the computation of individual costs for different inter-
vention steps, given by (39).

To visualize the trade-off between the two objectives DALYportion and
C, a series of different intervention scenarios are considered, using all
possible combinations of values of the intervention parameters given in
Table 12. A total of 216 different scenarios are constructed with these
values and the QMRA model was evaluated for each of them with a
Monte Carlo batch size 5000. Fig. 16, demonstrates the relation between
the two objectives, using scatter plots on the objective space. Colors are
used to indicate the values of the cheese testing parameter ptest and
different symbols are used to indicate the values of the milk testing
parameter f sorting. The left figure illustrates the scenario within a dual-
pathogen framework, focusing solely on MPS-STEC and Salmonella,
with both objectives considering only the impact of these two patho-
gens. The figure on the right incorporates the effects of all the three
pathogens. The color transition from blue to red, signifying a stricter
postharvest intervention, clearly shows a increase in the cost, however it
is not so effective in reducing the the other objective DALY. This
behaviour can attributed to the adapted strategy for rejecting a partic-
ular batch of cheese, in the postharvest sampling scheme, as described in
Section 2.5.2. Unlike MPS-STEC, for the other two pathogens the
rejection rule is not based on their corresponding high virulent or highly
pathogenic strains. As a result due high prevalence, as shown in
Table 10, pathogens like Lm are easily detectable when tested, but rather
a smaller proportion of the entire population is actually pathogenic,
which impacts the DALY. This explains why the effect of postharvest
intervention on the DALY, is even less or almost null in the three-
pathogen framework. On the other hand, the preharvest intervention
parameter f sorting as indicated by the symbols, shows an increasing

impact on the cost and decreasing impact on the DALY metric. This
explains the effectiveness of the preharvest intervention scheme on the
two objectives of interest, though in the present model the concentration
of L. mono remains unaffected by this intervention scheme.

5. Discussions and perspectives

5.1. Model calibration

Model calibration or anchoring is a technique of improving the
models efficiency, to be more compatible with observed data. The pro-
posed model is intended to replicate the real life scenario of fabrication
of a batch of cheese, however in reality not all practical gestures are
possibly reproduced in the model. In this subsection, we list a few per-
spectives to be adapted in the current model, which are left as future
work.

Preharvest intervention strategy The current model implements a
simple preharvest intervention strategy based on the concentration of
E. coli in the farms BTM. In other words the acceptance or rejection of
farms is based on the E. coli concentrations which is assumed to be
positively correlated with the concentrations of other pathogenic sero-
types, as explained in Section 2.5.1. Although the farms BTM is tested for
all the three types of pathogenic contamination, only the E. coli con-
centration can be measured quantitatively. Whereas for the other
pathogens, due to low concentrations, only their presence can be
detected and the strains can be identified. However in reality preharvest
intervention strategies based on contamination of farm milk by Salmo-
nella and Lm are practiced. To enhance the preharvest intervention
strategy further, we can utilize this additional information, which is
considered as a future perspective. Moreover, in the proposed QMRA
model the concentration of Lm in the ATM, that is, the milk to be used for
cheese production, is computed directly using (1). This was motivated
by the work of Sanaa et al. (2004), who performed a Monte Carlo
simulation study, based on the data collected in the years 2000–2001,
from respectively 347 and 79 farms, respectively, for Camembert and
Brie in France. To compute the concentration of Lm in the milk used for
cheese making, the authors followed the particular milk sorting strategy,
for accepting the milk coming from different farms. The preharvest
intervention step as explained in Section 2.5.1, is thus not applicable on
the concentration of Lm and thereafter on the risk values, as simulated
using the current version of our proposed model. The implementation of
a more realistic and impactful preharvest step is left as a future
perspective (see Section 5.1).

Computation of the DALY metric The computation of the DALY metric
DALYportion,x as defined previously, is based on a series of assumptions
which allows us to use the available DALY estimates from the literature
(Cassini et al., 2018). This approach was adopted to simplify computa-
tions and it is to be noted that, the DALY metric thereby estimated is an
approximate which requires careful interpretation and usage. A poten-
tial future perspective in this context includes using appropriate epide-
miological studies to estimate the DALYs related to the consumption of
raw milk cheese.

Postharvest intervention strategy As mentioned earlier the construction
of this model was motivated by an optimization problem to help cheese
producers. The optimization was applied to four parameters of the
model but other parameters could be of interest to cheese producers. In
the context of own-checks, the choice of the sampling date for batches of
cheese could prove decisive. In the current model, the date is set at 14
days which represents a certain compromise among different pathogens.
The probability of detecting batches at the end of maturation increases
for Lm but decreases for Salmonella and STEC. The other option would be
to use two sampling dates optimized for each category of pathogens.

Pathogen classification based on virulence Pathogen classification
based on virulence refers to categorizing microorganisms, into different
groups or classes according to their ability to cause disease. Food-borne
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outbreaks tend to result from more virulent serotypes of the pathogens,
which are commonly implicated in human illness. In the proposed
model, high and low-virulence Salmonella(see, e.g., Strickland et al.,
2023) serotype proportions were incorporated into each process module
to account for their different impact and exposure. For STEC the highly
pathogenic and non pathogenic classification, was based on serotypes
markers as proposed in Perrin et al. (2014). However, in Auvray et al.
(2023) a more robust classification of pathogenic E. coli strains was
proposed based on their potential virulence. The proposedmodel did not
incorporate this new classification; however, it presents a promising
avenue for enhancing the model in the future. For Lm there exists clas-
sification proportion of high, low and medium virulent serotypes for
cold smoked salmon (see, e.g., Fritsch et al., 2018), but as far as our
knowledge is concerned, these proportions remain unknown within the
context of raw milk soft cheese in the existing literature. Developing a
postharvest sampling plan centered around high-virulent serotypes
could offer enhanced efficiency from an industrial perspective and
provide a rational basis for decision-making.

Second growth step for L. mono As shown in Fig. 7, Lm has no decline
phase after the salting step, and the colonies experience a second growth
phase depending on the environmental conditions. The second growth
phase is modeled using (8), which involves the maximum growth rate
parameter μmax

Lm (t), which depends on the physico-chemical parameters
namely the pH, temperature and water activity. The dynamics of these
environmental parameters are taken from Perrin et al. (2014), as shown
in Fig. 5a, and the available information extends only up to the salting
step. According to challenge test data, it has been observed that the
second growth step is activated when the pH increases to 6, from 4.52
starting from the end of salting step. Depending on the location of the
colonies in the cheese matrix, the pH becomes favorable approximately
after the 7th and 20th day of production, respectively for the rind and
core region colonies. For simplicity, during the second growth phase, the
proposed model uses a fixed value of the maximal growth rate μmax

Lm (t),
which is computed using pH 6, temperature 12.45 degree Celsius and
water activity parameter 0.99. However a more realistic implementation
can be achieved, by using a more dynamic approach to model the
environmental physico-chemical parameters.

5.2. Model validation and applicability

This work presents a QMRAmodel that offers a scientific approach to
simulate the real-life scenarios encountered during the production of
rawmilk soft cheese. The model builds upon the previous work available
in the literature, on the QMRA modeling of raw milk soft cheese (see, e.
g. Basak et al., 2024; Perrin et al., 2014; Sanaa et al., 2004;
Tenenhaus-Aziza et al., 2014) as well as expert opinions from ANSES,
CNIEL, ACTALIA, and L2S. The primary goal of this type of model is to
study the impacts of different process intervention parameters, in order
to implement intervention strategies and make recommendations to
cheese producers. However before deploying into industrial applica-
tions, careful precautions should be taken in terms of model quality
assurance, that includes model verification, validation and calibration.
Model verification includes checking the software code used to imple-
ment the model and providing a proper documentation. Future di-
rections for this research work would involve the publication of the
multipathogen model in the FSKX format, thereby promoting open ac-
cess and facilitating easy and quick peer comparisons. The next crucial
step is model validation which ensures the accuracy and reliability of the
model’s predictions. This involves assessing whether the QMRA model
accurately reflects the real-world conditions and produces results that
are consistent with observed data. Given the complexity of the QMRA
model, the validation step involved a detailed study and precise cali-
bration of various components within the separate modules that repli-
cate different phases of cheese production. As previously mentioned, the
proposed QMRA model is based on existing models from the literature

and has been updated with data and expertise collected under the
ArtiSaneFood project. The outputs from different components of the
QMRAmodel were compared and calibrated with previous QMRAworks
and published reports on contamination and outbreaks. For STEC the
prevalence rates and baseline risk are compared to Perrin et al. (2014),
for Salmonella the contamination rates were compared to reports pub-
lished by the Fédération National des éleveurs de Chévres (FNEC) in
France, and for Lm the references from Sanaa et al. (2004), Food and
Administration et al. (2012) were compared. The comparisons assured
similar orders of magnitude for the simulated outputs of the QMRA
model, validating it and making it ready for simulation studies. How-
ever, it should be noted that, given the complexity of the model, the
outputs can be sensitive to certain input parameters. Therefore, direct
comparison of the results with the literature might not be ideal when
data-driven parameter values are updated and when the model is
enhanced with new functionalities. Despite of model quality assurance,
the reliability and applicability of the model still remain subject to
ongoing evaluation and refinement. According to World Health Orga-
nization et al. (2021) “Models are always incomplete representations of
the system they are intended to model, but they can still be useful.”
Hence, it is essential to note that the outputs obtained using the simu-
lator, such as the batch risk, loss of milk and proportion of rejecting
cheese batches are just the estimates of a hypothetical scenario simu-
lated with a state-of-the-art QMRA model. Depending on situations and
model inputs these output can be significantly different from the actual
prevalence of observed in reality. Nevertheless, the proposed multi-
pathogen model continues to serve as a valuable tool for evaluating the
efficacy of intervention strategies and aiding cheese producers in their
decision-making processes.

Funding

This work is a part of the European project ArtiSaneFood funded by
the PRIMA program (grant number: ANR-18-PRIM-0015) of the Euro-
pean Union. This project aims on microbial safety of artisanal fermented
food produced in the Mediterranean region.

CRediT authorship contribution statement

Subhasish Basak: Writing – review & editing, Methodology. Lau-
rent Guillier: Writing – review & editing, Supervision, Methodology,
Conceptualization. Julien Bect: Writing – review & editing, Supervi-
sion, Methodology, Conceptualization. Janushan Christy: Writing –
review & editing, Methodology, Data curation. Fanny Tenenhaus-
Aziza: Writing – review & editing, Supervision, Project administration.
Emmanuel Vazquez: Writing – review & editing, Supervision, Meth-
odology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The code will be made availble on GitHub.

Acknowledgements

The authors would like to express their gratitude to PRIMA and ANR
for providing financial support for this research work. Special thanks are
extended to the partners of the French consortium of the ArtiSaneFood
project, for their valuable contributions and insights during the imple-
mentation of intervention steps and collection of field data.

S. Basak et al. Microbial Risk Analysis 27-28 (2024) 100318 

17 



Appendix A. Programming tools and computational time

The multipathogen model is implemented in R and for STEC an implementation of the single pathogen version of the QMRA model is made
available in Food Safety Knowledge Markup Language (FSK-ML) format to facilitate its reuse (Basak et al., 2024). This open format is based on
predefined terms, metadata and controlled vocabulary to harmonize annotations of risk assessment models (see, e.g., Ungaretti Haberbeck et al.,
2018).

The current implementation of the multipathogen model takes around ∼ 4.5 s, to simulate one batch. The Table A.13 lists the proportion of
computational time (on a single core) spent while running the simulator. Evidently the cheese module takes more than 96% of the computational time,
which is dedicated to the time required for solving the ordinary differential equations that models the growth of the pathogens, as shown in (8).

The current implementation in R, uses the ode45 function provided by the pracma (Borchers, 2022) package, that implements the Dormand-Prince
(4,5) method. A detailed profiling on the computational time on the cheese module is shown in Table A.14, which precises the proportion of time taken
by each of the cheese production steps and their duration in the production process. The number of function evaluations performed by the ODE solver,
depends on the duration of the cheese production step, the behavior of the ODE’s solution within that duration, and the desired level of accuracy
specified by the user. Table A.14 shows the decomposition of the total time consumed by the ODE solver, while simulating a single batch. Except the
second growth step of Lm, the other cheese production steps runs the ODE solver separately for three pathogens. The time taken is proportional to the
total duration of the corresponding production step, however the second growth step spends relatively less time than others, despite of having a long
duration. This can be explained by the behaviour of the function, or equivalently the maximum growth rate μmax

Lm which is considered to be a constant
(see, e.g., Section 5.1) for that particular step.
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King, L.A., Espié, E., Haeghebaert, S., Grimont, F., Mariani-Kurkdjian, P., Filliol-
Toutain, I., Bingen, E., Weill, F.X., Loirat, C., De Valk, H., et al., 2009. Surveillance
du syndrome hémolytique et urémique chez les enfants de 15 ans et moins en France,
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