Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) and a predicted structural protein (pSP) of the Chronic bee paralysis virus (CBPV) isolated from various geographic regions.

To cite this version:

Philippe Blanchard, Frank Schurr, Violaine Olivier, Olivier Celle, Karina Antùnez, et al.. Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) and a predicted structural protein (pSP) of the Chronic bee paralysis virus (CBPV) isolated from various geographic regions.. Virus Research, 2009, 144 (1-2), pp.334-8. 10.1016/j.virusres.2009.04.025. hal-00419893
PHYLOGENETIC ANALYSIS OF THE RNA-DEPENDENT RNA POLYMERASE (RdRp) AND A PREDICTED STRUCTURAL PROTEIN (pSP) OF THE CHRONIC BEE PARALYSIS VIRUS (CBPV) ISOLATED FROM VARIOUS GEOGRAPHIC REGIONS.

Philippe Blanchard*1, Frank Schurr1, Violaine Olivier1, Olivier Celle1, Karina Antùnez2, Tamàs Bakonyi3, Hélène Berthoud4, Eric Haubruge5, Mariano Higes6, Sylwia Kasprzak7, Hemma Koeglberger8, Per Kryger9, Richard Thiéry1, Magali Ribière1.

1 Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Les Templiers, Route des Chappes, BP 111, 06902 Sophia Antipolis, France.
2 Laboratorio de Microbiologia, Instituto de Investigaciones Biologicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay.
3 Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143 Budapest, Hungary.
4 Agroscope Liebefeld-Posieux Research Station ALP, Mikrobiologie, Schwarzenburg Strasse 161, CH-3003 Bern, Switzerland.
5 Faculté Universitaire des Sciences Agronomiques, Unité d’Entomologie fonctionnelle et évolutive, Passage des Déportés, B-5030 Gembloux, Belgium.
6 Centro Apicola Regional, Direccion General de la Produccion Agropecuaria, Consejeria de Agricultura, Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain.
7 National Veterinary Research Institute, Department of Parasitology and Invasive Diseases, Al. Partyzantow 57, 24-100 Pulawy, Poland.
8 Institut für Bienenkunde, Spargelfeldstrasse 191, 1220 Wien, Austria.
9 University of Aarhus, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Forsogsvej 1, DK-4200 Slagelse, Denmark.
*Corresponding author

Telephone number: +33.492.948.769

Fax number: +33.492.943.701

e-mail: p.blanchard@afssa.fr
Summary

Chronic bee paralysis virus (CBPV) is responsible for chronic paralysis, an infectious and contagious disease of adult honey bees (Apis mellifera L.). The full-length nucleotide sequences of the two major RNAs of CBPV have previously been characterized. The Orf3 of RNA1 has shown significant similarities to the RNA-dependent RNA polymerase (RdRp) of positive single-stranded RNA viruses, whereas the Orf3 of RNA2 encodes a putative structural protein (pSP). In the present study, honey bees originating from 9 different countries (Austria, Poland, Hungary, Spain, Belgium, Denmark, Switzerland, Uruguay and France) were analysed for the presence of CBPV genome. The complete genomic nucleotide sequence of the RdRp (1947bp) and of the pSP (543bp) from 24 honey bee positive samples was determined and the phylogenetic relationship among isolates was investigated. Four distinct genotypes of CBPV were observed.

Keywords: Chronic bee paralysis virus (CBPV), RNA-dependent RNA polymerase, Predicted structural protein, Phylogenetic analysis, Apis mellifera.
Chronic bee paralysis virus (CBPV) is the aetiological agent of an infectious and contagious disease of adult honey bees (*Apis mellifera* L.) known as Chronic paralysis (Ball & Bailey, 1997). This pathology is known to induce significant losses in honey bee colonies (Allen & Ball, 1996), characterized by clusters of trembling, flightless, crawling bees and by individual black, hairless bees standing at the hive entrance (Bailey et al., 1983; Ball & Bailey, 1997).

Although the complete sequences of the two major genomic RNAs of CBPV have recently been determined (Olivier et al., 2008), its taxonomic position is currently unassigned (Mayo et al., 2005). RNA1 (3674 nt) and RNA2 (2305 nt) are positive single-stranded RNAs that are capped but not polyadenylated. Although CBPV shares several characteristics with viruses of the *Nodaviridae* and *Tombusviridae* families, CBPV could be considered as the type species of a new family of positive single-stranded RNA viruses (Olivier et al., 2008).

The distribution of CBPV is worldwide (Allen & Ball, 1996; Ribière et al., 2008). The prevalence of this virus has been investigated in various countries, such as Great Britain (Bailey et al., 1981), Poland (Topolska et al., 1995), France (Ribière et al., 2000; Tentcheva et al., 2004), Uruguay (Antunez et al., 2005), Austria (Berényi et al., 2006), New Zealand (Todd et al., 2007), Hungary (Forgach et al., 2008), Denmark (Nielsen et al., 2008), Brazil (Teixeira et al., 2008), Spain (unpublished data) and Belgium (unpublished data).

Among the many viruses able to infect honey bees, some have been studied by phylogenetic analysis, including *Acute bee paralysis virus* (ABPV) (Bakonyi et al., 2002), *Sacbrood virus* (SBV) (Grabensteiner et al., 2001), *Kashmir bee virus* (KBV) (Hung et al., 2000), *Deformed wing virus* (DWV) (Berényi et al., 2007) and more recently, *Israeli acute paralysis virus* (IAPV) (Blanchard et al., 2008b; Palacios et al., 2008). While the phylogenetic analysis of SBV and ABPV revealed clustering of the strains according to their geographic origins (Bakonyi et al., 2002; Grabensteiner et al., 2001), the phylogenetic analysis of DWV revealed a monophyletic cluster, despite the various geographic origins of the isolates (Berényi et al., 2007). The preliminary results on the phylogenetic analysis of IAPV also seem to reveal distinct lineages according to their geographic origins (Blanchard et al., 2008b; Palacios et al., 2008).
Up to date, no study on the genetic diversity of CBPV could be carried out, because of the unavailability of complete nucleotide sequence of CBPV. Recently, we have reported genomic variability between partial sequences of CBPV from different bee samples that led us to develop improved molecular diagnostic methods and quantitative assays (Blanchard et al., 2007, 2008a). By using these assays, 40% of the CBPV isolates that were not detected with the first CBPV RT-PCR test published by our laboratory (Ribière et al., 2002) were successfully detected.

The aim of this study was to assess the genetic relationship among CBPV isolates from various geographic origins. We have chosen to perform the phylogenetic analysis on the Orf3 of CBPV RNA1, reported as the only amino acid sequence sharing significant similarities with the conserved sequence domains of the RNA-dependent RNA polymerase (RdRp) of single-stranded RNA viruses (Olivier et al., 2008). Moreover, Baker and Schroeder (2008) have recently demonstrated the possibility of using the RdRp as a taxonomic marker for the classification of Picorna-like viruses infecting honey bees. To complete our study, we also performed a phylogenetic analysis on the Orf3 of CBPV RNA2, coding for a predicted structural protein (pSP), as suggested by Olivier et al, (2008).

Samples of adult worker bees were collected from nine countries (Austria, Belgium, Denmark, France, Hungary, Poland, Spain, Switzerland, Uruguay). The samples were collected between 2003 and 2007, from honey bee colonies presenting symptoms of chronic paralysis or abnormal mortalities, except for the Swiss samples and an Austrian sample, where no specific symptoms were identified. Samples tested CBPV-positive, either by the AGID test (Agarose Gel ImmunoDiffusion) (Ribière et al., 2000), or by the RT-PCR test (Ribière et al., 2002) were sent to the bee pathology unit (French Food Safety Agency, Sophia Antipolis, France) for phylogenetic analysis. A total of 101 bee samples were analysed. Sample preparation, RNA extraction and cDNA synthesis were performed as described previously (Blanchard et al., 2007; Ribière et al., 2002). Bee samples were first analysed using the newly developed RT-PCR CBPV test (Blanchard et al., 2008a), completed by the recently upgraded real-time RT-PCR test (Blanchard et al., 2007; Celle et al., 2008). cDNAs of each CBPV positive sample were subjected to supplementary PCRs, allowing to amplify the entire RdRp and the predicted structural protein of CBPV. Sixty-four out of the 101 investigated bee
samples from the different countries were found CBPV positive with high viral load (over 10^{10} CBPV copies per bee), enabling to amplify the entire RdRp and the pSP.

Three different primer pairs were designed by Primer3 Output for the amplification of overlapping fragments which cover the entire RdRp of CBPV (Table 1), based on the sequence of CBPV RNA1 (GenBank accession no. EU122229) described by Olivier et al. (2008). Amplifications were carried out in a total reaction volume of 50µl using the Platinum® Pfx DNA Polymerase (Invitrogen). This polymerase has a proofreading 3'-5' exonuclease activity, and therefore provides higher fidelity. The final PCR reaction contained 2X Platinum® Pfx Amplification Buffer, 1mM of MgSO₄, 0.3 mM of dNTPs mix PCR grade, 0.3 µM of each primer, 2.5 U of Platinum® Pfx DNA Polymerase and 5 µl of cDNA. The thermal cycling conditions were 5 min at 94°C (denaturing of the template and activation of the enzyme), followed by 35 cycles consisting of denaturing at 94°C for 15 s, annealing at 55°C for 30 s and extension at 68°C for 30 s to 2 min (depending on the primer pair), completed by a final extension at 68°C for 10 min. The PCR products were then electrophoresed in 1% agarose gel in TAE buffer, stained with ethidium bromide, and visualised under UV light. The PCR products were then purified using the Qiaquick PCR purification kit (Qiagen) and sequenced in both orientations by using primers described above (Milligen, France). The complete genomic nucleotide sequence of the RdRp of different CBPV isolates (1947bp) was determined by overlapping the three sequences using the Seqman™ II program of the DNASTAR software package (Lasergene). A primer pair was designed, covering the entire Orf3 (543bp), coding for a predicted structural protein (pSP) (Table 1), based on the sequence of CBPV RNA2 (GenBank accession no. EU122230) described by Olivier et al. (2008). Amplification, PCR product purification, sequencing and nucleotide sequence determination were carried out as described for the RdRp gene. Preliminary comparison of the sequences from isolates from the same geographical origin revealed that most frequently they shared near 100% identity. The analysis was thus restricted to the divergent sequences (5 from France and 17 from different countries, Table 2). The nucleotide sequences of the RdRp and the pSP from the 22 new isolates were submitted to the GenBank database under accession numbers FJ345306 to FJ345349. The nucleotide sequence of RdRp and pSP of CBPV reference isolates A and B, were determined
respectively from RNA1 (GenBank accession nos. **EU122229** and **EU122231**) and RNA2 sequences (GenBank accession nos. **EU122230** and **EU122232**), described previously by Olivier et al. (2008). In this study, CBPV reference isolates A and B were respectively named Fr 1 and Fr 2.

Nucleotide sequences of RdRp and predicted structural protein were aligned by using the MegAlign™ program of the DNASTAR software package (Lasergene) and the CLUSTAL_X program (Thompson et al., 1997). The final alignment was checked by visual inspection. Phylogenetic analysis was performed by using the neighbour-joining (NJ), maximum likelihood (ML) and maximum parsimony (MP) methods implemented in the PHYLOWIN program (Galtier et al., 1996), and by using the NJ and MP methods implemented in the Molecular Evolutionary Genetics Analysis (MEGA) program version 3.1 (Kumar et al., 2004). All methods gave similar profiles. Results using the MEGA software are shown. Branches were condensed when bootstrap values were less than 70 %.

The analysis of the sequence pair distances using the Clustal W method revealed 0.3-9.6% divergence between the 24 RdRp nucleotide sequences and 0.2-4.6% divergence between the 24 RdRp amino acid sequences. The phylogenetic relationship among the 24 CBPV RdRp sequences was assessed and revealed four main clusters, supported by high bootstrap values (Figure 1) using NJ, ML and MP methods of analysis. Lineage A contained most of French isolates (5/7) and the isolates from Spain and Belgium. Lineage B contained a French isolate, two Swiss isolates and all the Polish, Austrian, Danish and Hungarian isolates. Lineage C contained two Uruguayan isolates and lineage D contained 3 isolates obtained from different countries (France, Switzerland and Uruguay). Since isolates from Uruguay, Switzerland and France were present in several clusters, no clear geographical segregation was observed. However, lineage A mainly contains isolates from South and Western Europe, compared to lineage B clustering isolates from North and Eastern Europe, while lineage C contains isolates from South America. The clustering of a French, a Swiss and an Uruguayan isolates (Lineage D) remains unexplained and raises the question of the possible role of commercial exchange of honey bees. However, the presence of French isolates in three of four major lineages (5 in lineage A, 1 in lineage B and 1 in lineage D) could actually results from the over representation of isolates from France. Studying more isolates originating from...
a broader range of countries could help to definitively identify geographical trends. In this study, no correlation between sequence variation and occurrence of clinical symptoms was observed. The branching of the phylogenetic tree did not enable the segregation of CBPV isolates from symptomatic (83%) and asymptomatic bee colonies (17%).

The phylogenetic relationship among the 24 CBPV pSP sequences revealed a similar profile to that obtained with the RdRp sequences (Figure 2), except for an Uruguayan isolate (Ur 3). The pSP of this isolate clustered in lineage B, compared to the RdRp of this isolate, which clustered in lineage C. Moreover, lineage C and D were clustered together. While the alignment of the 24 pSP nucleotide sequence revealed 0-6.6% divergence, the alignment of the 24 pSP amino acid sequences showed a very low degree of divergence (0-2.3% corresponding to only 2 amino acids), unexpectedly suggesting a highly conserved protein. Due to its low variability, pSP sequence seems not to be indicated for phylogenetic study, while RdRp sequences are more discriminating. Whereas it is very likely that the Orf3 of CBPV RNA1 encodes the viral RdRp (Olivier et al., 2008), it is necessary to further characterize the proteins encoded by the different ORFs of the CBPV genome (work in progress in our laboratory).

In conclusion, this study underlines the presence of chronic paralysis outbreaks in several countries and points to the need to assess the impact of this disease in colony weakness worldwide. Further investigations on CBPV isolates from a broader origin are necessary to confirm their geographical distribution, to assess the global distribution of this virus and to further investigate the CBPV role in disease outbreaks.

Acknowledgements

This work was supported by the French Ministère de l’Agriculture et de l’Alimentation and with funds from the “Fonds Européens d’Orientation et de Garantie Agricole” (FEOGA), in accordance with the French programme for the improvement of the production and commercialisation of beekeeping products. The authors are grateful to the collaborators and beekeepers for having kindly provided bee samples. The help of Ms. Cristina Gastaldi in improving the English of the manuscript is gratefully acknowledged.
References

Grabensteiner, E., Ritter, W., Carter, M. J., Davison, S., Pechhacker, H., Kolodziejek, J.,
virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using

Kasmir bee virus isolated from Apis mellifera L. and Varroa jacobsoni Oud. Apidologie 31, 17-
23.

Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: integrated software for Molecular Evolutionary

Elsevier, San Diego, 1131-1144.

queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and
sacbrood virus in honey bees (Apis mellifera) in Denmark. Apidologie 39, 310-314.

Olivier, V., Blanchard, P., Chaouch, S., Lallemand, P., Schurr, F., Celle, O., Dubois, E.,
Tordo, N., Thiéry, R., Houlgatte, R. & Ribière, M. 2008. Molecular characterisation and
phylogenetic analysis of Chronic bee paralysis virus, a honey bee virus. Virus Res. 132, 59-
68.

Palacios, G., Hui, J., Quan, P. L., Kalkstein, A., Honkavuori, K. S., Bussetti, A. V., Conlan, S.,
Evans, J., Chen, Y. P., Vanengelsdorp, D., Efrat, H., Pettis, J., Cox-Foster, D., Holmes, E. C.,
clusters are circulating in the United States. J. Virol. 82, 6209-6217.

Ribière, M., Ball, B. & Aubert, M. 2008. Natural history and geographical distribution of honey
bee viruses. In: Aubert, M., Ball, B., Fries, I., Moritz, R., Milani, N., Bernardinelli, I.(Eds),
Virology and the Honey Bee, European Commission, Bruxelles, pp. 15-84.

diagnosis of chronic bee paralysis virus infection. Apidologie 33, 339-351.

Teixeira, E. W., Chen, Y., Message, D., Pettis, J. & Evans, J. D. 2008. Virus infections in

Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M. E., Bergoin,
M. 2004. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and

Thompson, J. D., Gibson, T. J., Plewniak, F.,Jeanmougin, F. & Higgins, D. G. 1997. The
CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by

Todd, J. H., de Miranda, J. R. & Ball, B. V. 2007. Incidence and molecular characterization of
viruses found in dying New Zealand honey bee (Apis mellifera) colonies infested with Varroa
destructor. Apidologie 38, 354-367.

Topolska, G., Ball, B. V., Allen, M. 1995. Identyfikacja wirusów u pszczół z dwóch
warszawskich pasiek. Medycyna Wet. 51, 145-147
Captions to figures

Table 1
Oligonucleotide primers used for the amplification of the RNA-dependent RNA polymerase (RdRp, position 1643-3589 on RNA1) and for the amplification of the predicted structural protein (pSP, position 303-845 on RNA2).

Table 2
Origin of the studied CBPV isolates used for the phylogenetic analysis: isolate reference, year of sampling, presence of CBPV symptoms, country of origin, identification of sequence and GenBank accession number.

Figure 1
Phylogenetic tree constructed using the neighbour-joining (NJ) method with Kimura parameters, included in the MEGA version 3.1 program (Kumar et al., 2004), on the alignment of the 1947bp of RdRp sequence of 24 CBPV isolates. The number of each node represents the bootstrap values as the result of 1000 replicates. Branches were condensed when bootstrap values were less than 70 %.

Figure 2
Phylogenetic tree constructed using the neighbour-joining (NJ) method with Kimura parameters, included in the MEGA version 3.1 program (Kumar et al., 2004), on the alignment of the 543bp of predicted structural protein sequence of 24 CBPV isolates. The number of each node represents the bootstrap values as the result of 1000 replicates. Branches were condensed when bootstrap values were less than 70 %.
<table>
<thead>
<tr>
<th>Target</th>
<th>Primer Name</th>
<th>Sequence (5’ – 3’)</th>
<th>Position</th>
<th>PCR product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBPV RNA 1 RdRp</td>
<td>CBPV A1</td>
<td>TGAGGCTTGCTTCTGACAAA</td>
<td>1589-1608*</td>
<td>902</td>
</tr>
<tr>
<td></td>
<td>CBPV A2</td>
<td>ACTACTAGAAACTCGTCTGGCTTCG</td>
<td>2490-2468*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBPV A3</td>
<td>TCAGACACCCAATCTTGATTATTG</td>
<td>1921-1933*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBPV A4</td>
<td>CCGGAGACAAAGGTCATCAT</td>
<td>3445-3426*</td>
<td>1525</td>
</tr>
<tr>
<td></td>
<td>CBPV A5</td>
<td>GGCCCATCAGAATCATGAT</td>
<td>3264-3283*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBPV A6</td>
<td>ACCAGTGCCTAGACGACTTA</td>
<td>3667-3646*</td>
<td></td>
</tr>
<tr>
<td>CBPV RNA 2 pSP</td>
<td>CBPV A7</td>
<td>ACTCCCGTCGTTGTTCT</td>
<td>109-128°</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>CBPV A8</td>
<td>GGCATTGTGTATTTGTTTTG</td>
<td>1003-984°</td>
<td></td>
</tr>
</tbody>
</table>

* Nucleotide positions refer to the CBPV RNA1 sequence ([EU122229](#)) described by Olivier et al., (2008).

° Nucleotide positions refer to the CBPV RNA2 sequence ([EU122230](#)) described by Olivier et al., (2008).
<table>
<thead>
<tr>
<th>Isolate(^1) / Year</th>
<th>Country</th>
<th>Symptoms(^2)</th>
<th>Identification</th>
<th>GenBank accession no. CBPV RdRp</th>
<th>GenBank accession no. CBPV pSP(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(^*) / 2004</td>
<td>France</td>
<td>Yes</td>
<td>Fr 1</td>
<td>EU122229</td>
<td>EU122230</td>
</tr>
<tr>
<td>B(^*) / 2005</td>
<td>France</td>
<td>Yes</td>
<td>Fr 2</td>
<td>EU122231</td>
<td>EU122232</td>
</tr>
<tr>
<td>198 / 2007</td>
<td>France</td>
<td>Yes</td>
<td>Fr 6</td>
<td>FJ345313</td>
<td>FJ345334</td>
</tr>
<tr>
<td>596 / 2007</td>
<td>France</td>
<td>Yes</td>
<td>Fr 7</td>
<td>FJ345314</td>
<td>FJ345335</td>
</tr>
<tr>
<td>351 / 2007</td>
<td>France</td>
<td>Yes</td>
<td>Fr 8</td>
<td>FJ345315</td>
<td>FJ345336</td>
</tr>
<tr>
<td>363 / 2007</td>
<td>France</td>
<td>Yes</td>
<td>Fr 9</td>
<td>FJ345316</td>
<td>FJ345337</td>
</tr>
<tr>
<td>274 / 2007</td>
<td>France</td>
<td>Yes</td>
<td>Fr 10</td>
<td>FJ345312</td>
<td>FJ345338</td>
</tr>
<tr>
<td>8-C / 2006</td>
<td>Uruguay</td>
<td>Yes</td>
<td>Ur 1</td>
<td>FJ345325</td>
<td>FJ345347</td>
</tr>
<tr>
<td>6-M / 2006</td>
<td>Uruguay</td>
<td>Yes</td>
<td>Ur 2</td>
<td>FJ345326</td>
<td>FJ345348</td>
</tr>
<tr>
<td>13-F / 2006</td>
<td>Uruguay</td>
<td>Yes</td>
<td>Ur 3</td>
<td>FJ345327</td>
<td>FJ345349</td>
</tr>
<tr>
<td>R1-C6 / 2004</td>
<td>Switzerland</td>
<td>No</td>
<td>Sw 1</td>
<td>FJ345322</td>
<td>FJ345344</td>
</tr>
<tr>
<td>R2-C102 / 2004</td>
<td>Switzerland</td>
<td>No</td>
<td>Sw 2</td>
<td>FJ345323</td>
<td>FJ345345</td>
</tr>
<tr>
<td>R3-C10 / 2004</td>
<td>Switzerland</td>
<td>No</td>
<td>Sw 3</td>
<td>FJ345324</td>
<td>FJ345346</td>
</tr>
<tr>
<td>BE 104 / 2003</td>
<td>Austria</td>
<td>Yes</td>
<td>Au 1</td>
<td>FJ345306</td>
<td>FJ345328</td>
</tr>
<tr>
<td>BE 78 / 2006</td>
<td>Austria</td>
<td>No</td>
<td>Au 5</td>
<td>FJ345308</td>
<td>FJ345329</td>
</tr>
<tr>
<td>AT 34 / 2004</td>
<td>Austria</td>
<td>Yes</td>
<td>Au 19</td>
<td>FJ345307</td>
<td>FJ345330</td>
</tr>
<tr>
<td>H4 300 / 2005</td>
<td>Hungary</td>
<td>Yes</td>
<td>Hu 15</td>
<td>FJ345317</td>
<td>FJ345339</td>
</tr>
<tr>
<td>1 M / 2006</td>
<td>Poland</td>
<td>Yes</td>
<td>Po 1</td>
<td>FJ345318</td>
<td>FJ345340</td>
</tr>
<tr>
<td>3 NZ / 2006</td>
<td>Poland</td>
<td>Yes</td>
<td>Po 3</td>
<td>FJ345319</td>
<td>FJ345341</td>
</tr>
<tr>
<td>4 RZ / 2006</td>
<td>Poland</td>
<td>Yes</td>
<td>Po 4</td>
<td>FJ345320</td>
<td>FJ345342</td>
</tr>
<tr>
<td>1 W / 2006</td>
<td>Poland</td>
<td>Yes</td>
<td>Po 6</td>
<td>FJ345321</td>
<td>FJ345343</td>
</tr>
<tr>
<td>L – 4 / 2007</td>
<td>Denmark</td>
<td>Yes</td>
<td>De 4</td>
<td>FJ345310</td>
<td>FJ345332</td>
</tr>
<tr>
<td>B4 V / 2006</td>
<td>Spain</td>
<td>Yes</td>
<td>Sp 1</td>
<td>FJ345311</td>
<td>FJ345333</td>
</tr>
<tr>
<td>23 / 2006</td>
<td>Belgium</td>
<td>Yes</td>
<td>Be 23</td>
<td>FJ345309</td>
<td>FJ345331</td>
</tr>
</tbody>
</table>

\(^1\) Isolate reference given by our colleagues

\(^2\): Presence of symptoms like chronic paralysis or abnormal mortalities

\(^*\): CBPV reference isolates A and B (Olivier et al., 2008)

\(^*\): pSP, predicted structural protein
Figure 2

Po1
Po4
Au1
De4
Au5
Hu15
Au19
Po3
Po6
Fr6
Sw2
Sw1
Ur3
Sw3
Fr2
Ur1
Ur2
Sp1
Fr1
Be23
Fr8
Fr9
Fr7
Fr10