vanA in Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus detected in French cattle.
Marisa Haenni, Estelle Saras, Pierre Châtre, Danièle Meunier, Sylvie Martin, Gérard Lepage, Marie-Françoise Ménard, Patricia Lebreton, Thomas Rambaud, Jean-Yves Madec

To cite this version:
Marisa Haenni, Estelle Saras, Pierre Châtre, Danièle Meunier, Sylvie Martin, et al.. vanA in Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus detected in French cattle.. Foodborne Pathog Dis, 2009, 6 (9), pp.1107-11. 10.1089/fpd.2009.0303 . hal-00452925

HAL Id: hal-00452925
https://anses.hal.science/hal-00452925
Submitted on 3 Feb 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
vanA in Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus Detected in French Cattle

Marisa Haenni,1 Estelle Saras,1 Pierre Châtre,1 Danièle Meunier,1 Sylvie Martin,2 Gérard Lepage,3 Marie-Françoise Ménard,3 Patricia Lebreton,4 Thomas Rambaud,4 and Jean-Yves Madec1

Abstract

The goal of this study was to assess the presence of enterococci species presenting van-mediated glycopeptide resistance in French cattle. Fecal samples were collected from healthy and sick animals, and enterococci were screened for vancomycin resistance. Vancomycin resistance was principally encountered in Enterococcus gallinarum and Enterococcus casseliflavus strains. However, glycopeptide resistance was detected in three different species of enterococci (E. faecalis, E. faecium, and E. casseliflavus). Molecular characterization of the genetic support proved that they all presented the prototypic VanA element. Interestingly, the E. casseliflavus strain displayed a remarkable VanB phenotype=vanA-vanC genotype. Transferability, associated resistances, and factors of vanA cotransfer were sought. This study proved that acquired vanA genes can still be detected in food-producing animals more than a decade after the avoparcin ban. Indeed, calves, which are recurrently exposed to antibiotics in France, may allow the re-emergence of glycopeptide resistance through coselection factors, and this might potentially be concerning for human health.

Introduction

Glycopeptide antibiotics such as vancomycin and teicoplanin are used in the treatment of severe infections caused by Gram-positive bacteria. Enterococci constitute one of the target species, and the emergence of glycopeptide-resistant Enterococcus faecium (GRE), in Europe in 1988 (Leclercq et al., 1988; Uttley et al., 1988) and soon afterward in the United States (Sahm et al., 1989), has become of high clinical concern (Bonten et al., 2001). However, the transfer of the van genes to multiresistant Staphylococcus aureus also represents a major threat, as sporadically reported in the United States since 2002.

Different mechanisms of glycopeptide resistance were described in enterococci (Courvalin, 2006). High-level acquired resistance is principally mediated by the vanA gene worldwide and to a lesser extent by the vanB gene, which confers a transferable and inducible resistance to both vancomycin and teicoplanin or vancomycin only, respectively. These genes are located on transposons, allowing the intra- and interspecies spread of resistance.

Enterococci that most widely colonize food-producing animals, Enterococcus gallinarum and Enterococcus casseliflavus, display the intrinsic and chromosomally encoded vanC gene that confers a nontransferable low-level glycopeptide resistance. However, enterococci harboring transferable van genes were also detected, and even became of high concern when they spread among poultry and pigs (Bonten et al., 2001). Retrospectively, the use of the glycopeptide avoparcin as a growth promoter in Europe was suspected to have selected high-level GRE. With regard to the possible expansion of the GRE reservoir in animals, which might constitute a risk for the human population, avoparcin was banned in all European countries in 1997.

Despite the ban, GRE in pigs and poultry were regularly reported. However, GRE isolated from cattle were scarcely described worldwide (Bonten et al., 2001). In this study, we describe the first vanA-presenting Enterococcus faecalis and Enterococcus faecium isolated from cattle in France. Moreover, we also report an E. casseliflavus VanB/vanA-vanC isolate, which is to our knowledge the first case of such a complex

1Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Unité Bactériologie Bovine et Hygiène des Viandes, Lyon, France.
2LCAM, Metz, France.
3LVD53, Laval, France.
4LVD76, Rouen, France.
phenotype-genotype association described in food-producing animals.

Materials and Methods

Bacterial isolates

The presence of GRE was assessed by analyzing feces of healthy or sick animals (calves, young beef cattle, and culled cows) in the frame of two studies. First, enterococci were isolated from healthy animals randomly sampled at the time of slaughter during a 2-year (2003–2004) survey, conducted as part of the National Surveillance Program monitored by the French Ministry of Agriculture. Enterococci isolates were sought using the Slanetz and Bartley selective medium (S&B; Oxoed, Dardilly, France). Second, samples from diarrheic bovines collected in separate farms were analyzed in 2006, in partnership with three peripheral veterinary laboratories, as part of a study on the presence of digestive GRE. After enrichment in peptone broth, colonies were selected on S&B containing 6 mM copper.

All GRE (n = 26) were characterized on the basis of colony morphology, API20 Strep test (Biomerieux, Marcy l'Étoile, France), and species-specific polymerase chain reaction (PCR) (Ke et al., 1999; Depardieu et al., 2004; Jackson et al., 2004). The presence of GRE was assessed by analyzing feces of healthy animals randomly sampled at the time of slaughter during a 2-year (2003–2004) survey, conducted as part of the National Surveillance Program monitored by the French Ministry of Agriculture. Enterococci isolates were sought using the Slanetz and Bartley selective medium (S&B; Oxoed, Dardilly, France). Second, samples from diarrheic bovines collected in separate farms were analyzed in 2006, in partnership with three peripheral veterinary laboratories, as part of a study on the presence of digestive GRE. After enrichment in peptone broth, colonies were selected on S&B containing 6 mM copper.

Antimicrobial susceptibility testing

Antibiotic resistance was determined by disk diffusion following the recommendations of the Antiobiogram Committee of the French Society for Microbiology (CA-SFM, 2007a, 2007b). The following antibiotics were tested: ampicillin, streptomycin, gentamicin, kanamycin, vancomycin, teicoplanin, erythromycin, lincomycin, spiramycin, pristinamycin, tetracycline, cotrimoxazole (trimethoprim 25 μg + sulfamethoxazole 23.7 μg), florfenicol, enrofloxacin, and bacitracin. Vancomycin and teicoplanin minimum inhibitory concentrations (MICs) were determined by E-test according to the manufacturer’s instructions (AB Biödisk, Solna, Sweden) on Muller-Hinton agar (Biomerieux), following the resistance breakpoints of the CA-SFM (>8 μg/mL for both glycopeptides). E. faecalis ATCC 29212 was used as a quality-control strain. The phenotypic copper resistance of selected isolates was tested on plates containing 0, 4, 8, 12, 16, 20, 24, 28, and 32 mM copper sulfate as described by Hasman et al. (2006).

Molecular analyses

The van genes were detected by PCR using specific primers as described (Depardieu et al., 2004). The VanA elements were analyzed by restriction fragment length polymorphism and restriction analysis as previously described (Palepou et al., 1998), using the CIP 103510 as vanA-positive control strain. Point mutations were sought in vanX by restriction polymorphism, or in vanS by sequencing. The Tn1546 was analyzed by PCR as described by Oh et al. (2007). The presence of the copper-resistance gene tcrB (Hasman and Aarestrup, 2002) and the postsegregational killing system (PSK) (Sorum et al., 2006) were investigated by PCR as described by Hasman and Aarestrup and Sorum et al., respectively.

Pulsed-field gel electrophoresis

All vanC E. gallinarum and E. casseliflavus were characterized by pulsed-field gel electrophoresis (PFGE) after digestion by SmaI, according to Garnier et al. (2004) with minor modifications. Parameters for electrophoresis for both strains were 6 V/cm at 14°C for 22 h, with pulse time ramps from 0.5 to 15 sec. Differences in PFGE patterns were assessed visually.

Transferability of resistance

Transferability of the vanA-mediated resistance was tested by filter and broth mating as described (Lester et al., 2006), using E. faecalis HJ2-2 as the recipient. For the filter mating, 100 μL of the donor and recipient strains were mixed and placed on a sterile 0.45 μm pore filter on Columbia agar complemented with 5% sheep blood (COS; AES Chemunex, Bruz, France). After 24 h of incubation at 37°C, bacteria were resuspended in NaCl 0.9%, and appropriate dilutions of bacteria were plated on COS agar containing rifampicin, fusidic acid, and vancomycin as selection antibiotics. Transconjugants were observed after 24–48 h of incubation at 37°C. Conjugation was validated by PCR detection of the vanA gene on five colonies randomly picked on the selective plate. For broth mating, 0.5 mL of donor and recipient strains were incubated in 4.5 mL of broth for 22–48 h. Selection was performed as for the filter mating. Transfer frequencies were expressed as the number of transconjugants per donor cell, and the data reported were the average of three different trials.

Results

A total of 1503 fecal samples were analyzed, 917 coming from the survey on healthy cattle and 536 from diarrheic bovines. In the survey, 218 enterococcal isolates were detected (recovery rate, 22.5%), among which 9 were GRE (9/967, 1%). In parallel, 17 GRE (17/536, 3.2%) were directly recovered from the sick animals.

Eight E. casseliflavus harboring the vanC2 gene and 15 E. gallinarum with the vanC1 gene were isolated (Table 1). Seven out of these 8 E. casseliflavus were recovered from healthy animals, while 14 out of the 15 E. gallinarum came from sick cattle. PFGE profiles showed no genetic relatedness (data not shown).

In parallel, three strains presented the GRE phenotype (Table 1). E. faecalis H356.2 was isolated from a healthy calf in 2003 at the Chapin slaughterhouse, Ille-et-Vilaine. The strain presented a high-level resistance to vancomycin and teicoplanin (MICs >256 mg/L), and the vanA gene was detected. Additional resistances to kanamycin, erythromycin, lincomycin, spectinomycin, pristinamycin, tetracycline, and cotrimoxazole were identified as well.

E. faecalis S8346 was isolated from a diarrheic calf on farm S8702 was isolated from a diarrheic calf in Seine-Maritime, in 2006. This strain presented a VanB phenotype (high-level vancomycin resistance [MIC > 256 mg/L] and susceptibility to teicoplanin [MIC = 3 mg/L]), associated with a vanA/vanC2 genotype. No additional antibiotic resistance was associated, but the tcrB gene was detected. The presence of this gene conferred a slightly reduced susceptibility to copper, since bacterial growth was observed on plates containing 11 mM of copper, instead of 6 mM for the E. faecalis
ATCC 29212 reference strain. Moreover, the PSK system was cotransferred with the CIP 103510 control strain.

S8702

E. casseliflavus vanC2, vanA

S8346

E. faecium vanA

E. gallinarum vanC1

S9011

E. gallinarum vanC1

S8698

E. gallinarum vanC1

S8670

E. casseliflavus

S8703

E. gallinarum

S9011

E. gallinarum

S8346

E. faecium

S8702

E. casseliflavus vanC2, vanA

<table>
<thead>
<tr>
<th>Strains Isolated From Cattle</th>
<th>Species</th>
<th>Genotypea</th>
<th>MICs b (mg/L)</th>
<th>Additional resistances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H95</td>
<td>Enterococcus casseliflavus</td>
<td>vanC2</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>H236</td>
<td>E. casseliflavus</td>
<td>vanC2</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>H344</td>
<td>E. casseliflavus</td>
<td>vanA</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>H402</td>
<td>E. casseliflavus</td>
<td>vanC2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>H430</td>
<td>E. casseliflavus</td>
<td>vanC2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>H447</td>
<td>E. casseliflavus</td>
<td>vanC2</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>H537</td>
<td>E. casseliflavus</td>
<td>vanC2</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>H143</td>
<td>Enterococcus gallinarum</td>
<td>vanC2</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>H356_2</td>
<td>Enterococcus faecalis</td>
<td>vanA</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>Sick animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8552</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8555</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8556</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>S8557</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8561</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8562</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8563</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8564</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8565</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8568</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8569</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8570</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>S8572</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8573</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8698</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S8700</td>
<td>E. casseliflavus</td>
<td>vanC1</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>S8703</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>S9011</td>
<td>E. gallinarum</td>
<td>vanC1</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>S8346</td>
<td>E. faecium</td>
<td>vanA</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>S8702</td>
<td>E. casseliflavus vanC2, vanA</td>
<td>>256</td>
<td>>256</td>
<td>–</td>
</tr>
</tbody>
</table>

avan-specific PCRs were validated using reference strains (two).
bMICs were systematically performed on the required quality-control strains.

Strains Species Genotypes and Antimicrobial Resistance of Glycopeptide-Resistant Enterococcus faecium Strains Isolated From Cattle

Discussion

In this study, both intrinsic vanC-mediated and acquired vanA-mediated resistances were detected in enterococci isolated from French cattle.

The presence of E. gallinarum and E. casseliflavus harboring the vanC gene was expected in cattle. However, surprisingly, E. gallinarum were nearly all isolated from sick cattle, whereas E. casseliflavus mainly came from healthy carriers. Yet, all isolates came from different farms and, according to their nonidentical PFGE patterns, should not have spread clonally. This discrepancy has never been reported before and thus remains unexplained. Therefore, further investigations on sick and healthy cattle would be needed, and particularly on samples collected in a same period of time. On the other hand, the nontransferability of the vanC elements, and the low-level resistance conferred, usually leads to a lack of interest for these species. Yet, this might change with the emergence of vanA-vanC genotypes as described in human (Camargo et al., 2004) and now in cattle (E. casseliflavus S8702), as well as with the recent report of vanA-vanC1 E. gallinarum in human (Merquior et al., 2008).

Three GRE were also described here. They were recovered from different species (E. faecalis, E. faecium, and E. casseliflavus), but all presented the prototypic Tn1546 and conserved vanRSHAX genes. The E. faecalis H356_2 showed a high transfer rate—proving the dissemination capacities of the VanA element, but no cotransfer of erythromycin and/or tetracycline resistance was observed. This stands in partial contradiction with the...
hypothesis that persistence of vancomycin resistance is due to coselection through the use of these antibiotic classes (Aarestrup, 2000). Yet, coselection might occur through the use of other antimicrobials such as cotrimoxazole, which is the unique antibiotic that cotransferred with vanA in our experimental setting. It is also to note that cotrimoxazole is the second most widely used drug after tetracyclines in veterinary medicine in France. However, whether the cotransfer of the VanA-element might occur through another mechanism than antibiotic coselection cannot be excluded. Further, horizontal transfer of the van genes between poultry and cattle should not be underestimated when different animal species are reared within the same farm.

The E. faecium S8346 displayed multiple antibiotic resistances associated with the prototypic VanA element. Globally, the presence of multiresistant strains should be monitored, irrespective of the presence of van genes, since they might narrow the already small therapeutic arsenal against Enterococcus spp. Yet, resistance to tetracycline and macrolides—which was also detected in the E. faecalis H356_2 strain as well as in three E. casseliflavus and one E. gallinarum—was unexpected. Indeed, these antibiotic families are still used for the treatment and prevention of disease, and such enterococcal resistances have already been reported in cattle or food products (meat and milk) (MARA N, 2005; Jung et al., 2007; Kaszanyitzky et al., 2007). On the contrary, the detection of beta-lactam resistance was of higher concern because ampicillin remains the first-line treatment in human.

Finally, the E. casseliflavus S8702 presented the complex VanB/vanA-vanC pattern. Phenotype–genotype discrepancies have already been reported in human enterococci (Song et al., 2006). Likewise, the vanA-vanC genotype has been described in human E. gallinarum and E. casseliflavus (Dutka-Malen et al., 1994; Camargo et al., 2004), but, to our knowledge, such a complex association had never been described in an E. casseliflavus isolated from animals. Moreover, no VanS mutations or major genetic rearrangements of the Tn1546 can explain the mechanism of the VanB phenotype in the vanA genetic background (Song et al., 2006). Similarly, no detectable insertion or deletion in the Tn1546 was detected, thus leaving this specific phenotype–genotype association unexplained, as already described in E. faecium (Gu et al., 2009). As mentioned above, S8702 also harbors the tcrB and PSK system genes. On the one hand, copper sulfate, which is used as an additive, was shown to act as a selective factor of conjugation and transfer of the resistance to glycopeptides and macrolides (Hasman and Aarestrup, 2002), and tcr genes were already detected in E. casseliflavus isolated from pigs (Hasman et al., 2006). On the other hand, it has been suggested that PSK systems might be involved in the long-term persistence of vanA-containing plasmids in E. faecium isolated from poultry. However, the true relevance of these mechanisms is still debated (Hasman and Aarestrup, 2005; Sorum et al., 2006).

In conclusion, we isolated three different species of enterococci presenting a vanA-mediated glycopeptide resistance in cattle. Even if both studies were not conducted over the same period of time, the global prevalence of GRE (3/1503; 0.2%) is obviously not significant. However, one should note that all three strains were isolated from calves, both in healthy and sick contexts. In France, calves are recurrently exposed to antibiotics and, by far, harbor the most elevated resistance among cattle, including to extended-spectrum beta-lactamases (Madec et al., 2008). Therefore, despite the ban of avoparcin usage since 1997, it remains crucial to prevent any GRE re-emergence in food-producing animals, that is, in calves, but also in broilers and pigs (Kempf et al., 2008), that would now result from the use of other antibiotics than glycopeptides.

Acknowledgment

This study was supported in part by a grant from the Direction Générale de l’Alimentation, Ministère de l’Agriculture, France. We gratefully thank Christiane Brunet for excellent technical assistance.

Disclosure Statement

No competing financial interests exist.

References

Hasman H, Kempf I, Chialaine B, et al. Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by

Address correspondence to:
Jean-Yves Madec
Agence Francaise de Sécurité Sanitaire des Aliments (AFSSA)
Unité Bactériologie Bovine et Hygiène des Viandes
31 Ave. Tony Garnier
Lyon 69364
France

E-mail: jy.madec@lyon.afssa.fr
AUTHOR QUERY FOR FPD-2009-0303-HAENNI_1P

AU1: “GRE” has been expanded as “glycopeptide-resistant Enterococcus faecium.” Please check.
AU2: Please expand ATCC and CIP.
AU3: Disclosure Statement accurate? If not, please amend as needed.
AU6: Please mention the degrees of the corresponding author.